• Title/Summary/Keyword: trophic transfer

Search Result 17, Processing Time 0.017 seconds

Mercury Biogeochemical Cycling and Bioaccumulation in Aquatic Environments: A Review

  • Kim, Eun-Hee
    • Journal of Environmental Health Sciences
    • /
    • v.33 no.3
    • /
    • pp.180-183
    • /
    • 2007
  • Over the last century the mercury (Hg) concentration in the environment has been increased by human activities with inputs from sources such as atmospheric deposition, urban runoff, and industrial effluents. Mercury can be transformed to methylmercury (MeHg) in anaerobic conditions by sulfate reducing bacteria (SRB) and sediments are the principal location for MeHg production in aquatic environments. Interest in bioaccumulation of Hg and MeHg into lower trophic levels of benthic and pelagic organisms stems from public health concerns as these organisms provide essential links for higher trophic levels of food chains such as fish and larger invertebrates. Fish consumption is the major exposure route of MeHg to humans. Recently, it was reported that blood samples in Korea showed much higher Hg levels (5-8 times) than those in USA and Germany. Although this brings much attention to Hg research in Korea, there are very few studies on Hg biogeochemical cycling and bioaccumulation in aquatic environments. Given the importance of Hg methylation and MeHg transfer through food chains in aquatic environments, it is imperative that studies should be done in much detail looking at the fate, transport, and bioaccumulation of Hg and MeHg in the environment. Moreover, there should be long-term monitoring plans in Korea to evaluate the environmental and health effects of Hg and MeHg.

Biodynamic understanding of mercury accumulation in marine and freshwater fish

  • Wang, Wen-Xiong
    • Advances in environmental research
    • /
    • v.1 no.1
    • /
    • pp.15-35
    • /
    • 2012
  • Mercury (Hg) is a global environmental pollutant that has been the cause of many public concerns. One particular concern about Hg in aquatic systems is its trophic transfer and biomagnification in food chains. For example, the Hg concentration increases with the increase of food chain level. Fish at the top of food chain can accumulate high concentrations of Hg (especially the toxic form, methylmercury, MeHg), which is then transferred to humans through seafood consumption. Various biological and physiochemical conditions can significantly affect the bioaccumulation of Hg-including both its inorganic (Hg(II)) and organic (MeHg) forms-in fish. There have been numerous measurements of Hg concentrations in marine and freshwater fish worldwide. Many of these studies have attempted to identify the processes leading to variations of Hg concentrations in fish species from different habitats. The development of a biokinetic model over the past decade has helped improve our understanding of the mechanisms underlying the bioaccumulation processes of Hg in aquatic animals. In this review, I will discuss how the biokinetic modeling approach can be used to reveal the interesting biodynamics of Hg in fish, such as the trophic transfer and exposure route of Hg(II) and MeHg, as well as growth enrichment (the increases in Hg concentration with fish size) and biomass dilution (the decreases in Hg concentration with increasing phytoplankton biomass). I will also discuss the relevance of studying the subcellular fates of Hg to predict the Hg bioaccessibility and detoxification in fish. Future challenges will be to understand the inter- and intra-species differences in Hg accumulation and the management/mitigation of Hg pollution in both marine and freshwater fish based on our knowledge of Hg biodynamics.

Comparisons of fatty acid accumulation patterns of two filter feeders, Branchinella kugenumaensis and Daphnia magna in a controlled environment

  • Dongwoo, Yang;Seonah, Jeong;Jihee, Kim;Sangkyu, Park
    • Journal of Ecology and Environment
    • /
    • v.46 no.4
    • /
    • pp.304-315
    • /
    • 2022
  • Background: Filter-feeding zooplankton has limited food resources owing to their habitat. Consequently, it is crucial for them to acquire all essential compounds, such as fatty acids (FAs) and amino acids, from confined diets. To elucidate the trophic transfer of FAs to filter feeders, the primary consumers in freshwater ecosystems, we compared the FA accumulation patterns of two species of filter-feeding zooplankton, Daphnia magna and Branchinella kugenumaensis, in a laboratory experiment. Experimental neonates and nauplii preyed on a single phytoplankton species (Selenastrum capricornutum) for three days after hatching prior to diet switching. Five replicates per feeding group in each species were fed on six different types of mixed phytoplankton diet for 10 days after diet switching. Subsequently, the consumers and diets were harvested and FAs were extracted. Results: Principal component analysis showed that the FA profiles of zooplankton were well-grouped by species and diet. Although diet affects the FA profiles of consumers, they exhibit different FA accumulation patterns. D. magna had a higher 18C-ω3 content and ω3/ω6 ratio than did B. kugenumaensis. In contrast, B. kugenumaensis had higher contents of 18:1ω7 and 20:5ω3 (eicosapentaenoic acid), 22:6ω3 (docosahexaenoic acid), and a higher ratio of ∑18C monounsaturated FAs to ∑18C-ω3 polyunsaturated FAs than did D. magna. Conclusions: This study showed that two primary consumers, D. magna and B. kugenumaensis, fed the same diet had different assimilation patterns of FAs under controlled environments. Specific FA accumulation patterns in filter feeders can provide information on the transfer process of various FAs to high-trophic organisms.

The Concept of Microplastics and their Occurrence, Transport, Biological Effects, and Management Methods in the Ocean (미세플라스틱의 개념과 해양에서의 발생, 이동, 생물영향 및 관리대책)

  • Han, Sun-Kee
    • Journal of Environmental Health Sciences
    • /
    • v.46 no.5
    • /
    • pp.610-626
    • /
    • 2020
  • Objectives: This study aims to investigate the concept of microplastics and their occurrence, transport, biological effects, and management methods in the ocean. Methods: I reviewed articles on microplastics in the ocean by using the Google Scholar database. Results: Plastic litter has been reported as a ubiquitous pollutant in the ocean due to the extensive consumption of plastics and the mismanagement of plastic wastes. Microplastics are generally defined as synthetic polymer particles <5 mm in size. Microplastics generated from the degradation of plastic litter are currently a serious global concern since they spread easily all over the ocean, transfer to different tissues inside contaminated animals, and even across different trophic levels inside the food web. An additional concern is the ability of microplastics to adsorb organic and inorganic pollutants and subsequently release them into the ocean. Thus, alternatives to reduce microplastics in the ocean are discussed. Conclusions: This paper summarizes the concept of microplastics and their behavior in the ocean and suggests management methods for microplastics in support of a cleaner ocean.

The Seasonal Variation of Microbial Community in the Eutrophic Brackish Water of Lake Shihwa (시화호 주변 부영양화 기수유역의 미소생물 군집의 계절적 변화)

  • Baek, Seung-Ho;You, Kai;Park, Bum-Soo;Han, Myung-Soo
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.55-68
    • /
    • 2010
  • The seasonal variation of microbial community, based on the bacteria, heterotrophic nanoflagellates (HNF), phytoplankton and ciliates, was investigated at three sites in the eutrophic brackish water of Lake Shihwa and its adjacent areas from May 2007 through May 2008. At the upstream-region site St. 1, compared to the other two sites, significantly lower salinities and higher concentrations of nutrients and chlorophyll $\alpha$ (Chl. $\alpha$) were recorded. The annual average abundances of bacteria at St. 1, St. 2 and St. 3 were $6.8{\times}10^6$, $7.4{\times}10^6$ and $4.6{\times}10^6\;cells\;mL^{-1}$, respectively. As for the annual average concentrations of HNF, $19{\times}10^2$, $6.7{\times}10^2$ and $5.9{\times}10^2\;cells\;mL^{-1}$, were recorded in St. 1, St. 2 and St. 3 respectively. The highest ciliate abundance appeared at St. 1 on 29 April, 2008 and in which, 99% were autotrophic ciliate Mesodinium rubrum (Myrionecta rubra). Significant linear correlations between the biomass of bacteria and Chl. $\alpha$ were found, however, no significant relationships between ciliates abudance/biomass and their prey organisms were detected in all three sites, implying relatively low energy transfer efficiencies between them. These results indicated that the trophic relationship between ciliates and their prey organisms in the microbial community might be influenced by indirect route since higher trophic level organisms did not directly correlate to those of lower trophic level, although high primary productions were detected in the eutrophic brackish water of Lake Shihwa and its adjacent areas.

Zooplankton Grazing on Bacteria and Factors Affecting Bacterial C-flux in Lake Paldang Ecosystem (팔당호 생태계에서 동물플랑크톤의 박테리아 섭식 및 영향인자)

  • Uhm, Seong-Hwa;Hwang, Soon-Jin
    • Korean Journal of Ecology and Environment
    • /
    • v.39 no.4 s.118
    • /
    • pp.424-434
    • /
    • 2006
  • This study investigates bacteria-zooplankton grazing link and factors affecting their grazing relationship at trophically different two sites (Paldang Dam and Kyungan Stream) of Lake Paldang Ecosystem from April to December, 2005. Zooplankton were divided into two size groups; microzooplankton (MICZ) : 60-200 ${\mu}m$ and macrozooplankton (MACZ): >200 ${\mu}m$), and their grazing rates on bacteria were conducted for each size group separately. Bacterial abundance and seasonal change pattern were similar between two sites. MICZ, mostly rotifers (e.g., Brachionus, Keratella, Polyathra) were numerically dominant at both sites, while carbon biomass was highest in cladocerans. Zooplankton biomass was higher at the Kyungan Steam site compared to Paldang Dam site, and their high biomass during spring decreased as they were passing through the storm events in summer season at both sites. Zooplankton clearance rate (CR) was high in spring and autumn while low in summer at Paldang Dam site. However, zooplankton CR was high during the summer at Kyungan Stream site. Bacterial C-flux was high in spring and autumn when MACZ (esp. cladecerans) developed at a high biomass level at both sites. Overall, MACZ community CR and carbon flux (C-flux) were higher than those of MICZ, and the degree of difference between them was higher at Kyungan Stream site. Short hydraulic residence time and physical disturbance caused by summer storm event appeared to affect the zooplankton grazing on bacteria at both sites. The results of this study indicate that bacteria are potentially important carbon source of zooplankton, and that both biotic (e.g,, prey and predator taxa composition and abundance) and physical parameters appear to alter energy transfer in the planktonic food web of this river-reservoir hybrid system.

Abundances and Bacterivory of Heterotrophic and Mixotrophic Nanoflagellates in and Estuarine System of the Mankyung and Dongjin Rivers, Korea (만경.동진강 염하구에서 종속영양성 및 혼합영양성 미소편모류의 수도(數度)와 박테 리아 섭식)

  • 심재형;윤성화
    • 한국해양학회지
    • /
    • v.30 no.5
    • /
    • pp.413-425
    • /
    • 1995
  • Abundances and bacterivory of heterotrophic and mixotrophic nanoflagellates were investigated fourtimes between October 1993 and March 1995 in an estuarine system of the Mankyung and Dongjin rivers to understand distributions of nanoflagellates and ecological significance of bacterivory of nanoflagellates. Bacterivory of nanoflagellates were measured with fluorescently labeled bacteria (FLB). Heterotrophic and autotrophic flagellates showed a rage of 438-4,159 cells ml/SUP -1/ (mean of 2,145 cells ml/SUP -1/, n=20) and 971- 4,935 cells ml/SUP -1/ (mean of 2,2226 cells ml/SUP -1/, n-20), respectively. These two groups of nanoflagellates generally showed similar distributions of abundance. Abundances of heterotrophic nanoflagellates, known as major grazers of bacteria, and those of autotrophic nanoflagellates with chloroplasts showed statistically significant correlations with bacterial abundance (respectively, r$^2$=0.51 and r $^2$=0.47, p>0.05). Mixotrophic nanoflagellates seemed to comprise at least 4-23% of autotrophic nanoflagellate populations. Individual predation rates of heterotrophic nanoflagellates ranged from 2.2 to 14.2 bacteria flagellate/SUP -1/ h/SUP -1/ (mean of 4.9 bacteria flagellate/SUP -1/h/SUP -1/, n=16), and those of mixotrophic nanoflagellates from 1.6 to 9.7 bacteria flagellate/SUP -1/ h/SUP-1/ (mean of 3.7 bacteria flagellate /SUP -1/ h/SUP -1/, n=16). Bacterivory by mixotrophic nanoflagellates comprised from 30 to 69% of total nanoflagellates grazing on bacteria, indicating the significant role of mixotrophic nanoflagellates as grazers on bacteria in the study area. The ratios of grazing rates on bacteria to bacterial secondary production ranged widely from 0.06 to 1.23. In June, when abundances of total nanoflagellates were low, removal of bacteria by bacterivory of nanoflagellates was also a small fraction (0.08${\pm}$ 0.01, n=4) of bacterial production. In other seasons, nanoflagellates usually grazed on bacteria in significant fraction (0.06${\pm}$0.37, n=9) of bacterial production. Both heterotrophic and mixotrophic nanoflagellates appear to be major grazers on bacteria, and might transfer bacterial secondary production to higher trophic level in an estuarine system of the Mankyung and Dongjin rivers.

  • PDF