The Seasonal Variation of Microbial Community in the Eutrophic Brackish Water of Lake Shihwa

시화호 주변 부영양화 기수유역의 미소생물 군집의 계절적 변화

  • Baek, Seung-Ho (Korea Ocean Research and Development Institute South Sea Institute) ;
  • You, Kai (Department of Life Science, Hanyang University) ;
  • Park, Bum-Soo (Department of Life Science, Hanyang University) ;
  • Han, Myung-Soo (Department of Life Science, Hanyang University)
  • Received : 2010.01.12
  • Accepted : 2010.02.19
  • Published : 2010.03.01

Abstract

The seasonal variation of microbial community, based on the bacteria, heterotrophic nanoflagellates (HNF), phytoplankton and ciliates, was investigated at three sites in the eutrophic brackish water of Lake Shihwa and its adjacent areas from May 2007 through May 2008. At the upstream-region site St. 1, compared to the other two sites, significantly lower salinities and higher concentrations of nutrients and chlorophyll $\alpha$ (Chl. $\alpha$) were recorded. The annual average abundances of bacteria at St. 1, St. 2 and St. 3 were $6.8{\times}10^6$, $7.4{\times}10^6$ and $4.6{\times}10^6\;cells\;mL^{-1}$, respectively. As for the annual average concentrations of HNF, $19{\times}10^2$, $6.7{\times}10^2$ and $5.9{\times}10^2\;cells\;mL^{-1}$, were recorded in St. 1, St. 2 and St. 3 respectively. The highest ciliate abundance appeared at St. 1 on 29 April, 2008 and in which, 99% were autotrophic ciliate Mesodinium rubrum (Myrionecta rubra). Significant linear correlations between the biomass of bacteria and Chl. $\alpha$ were found, however, no significant relationships between ciliates abudance/biomass and their prey organisms were detected in all three sites, implying relatively low energy transfer efficiencies between them. These results indicated that the trophic relationship between ciliates and their prey organisms in the microbial community might be influenced by indirect route since higher trophic level organisms did not directly correlate to those of lower trophic level, although high primary productions were detected in the eutrophic brackish water of Lake Shihwa and its adjacent areas.

박테리아, HNF, 식물플랑크톤 그리고 섬모충류로 이어지는 미소생물군집의 계절적 변화를 2007년 5월에서 2008월 5월까지 부영양화된 기수호유역 시화호의 3개 정점에서 조사하였다. 배수갑문 주변의 두 정점과 비교하여 상류의 정점에서 염분농도가 낮게 나타났고, 영양염 농도와 더불어 Chl-$\alpha$가 현저하게 높게 기록되었다. 박테리아의 연 평균은 St. 1에서 $6.8{\times}10^6\;cells\;mL^{-1}$로, St. 2에서 $7.4{\times}10^6\;cells\;mL^{-1}$로, St. 3에서 $4.6{\times}10^6\;cells\;mL^{-1}$로 각각 관찰되었다. HNF의 연 평균은 St. 1에서 $19{\times}10^2\;cells\;mL^{-1}$로, St. 2에서 $6.7{\times}10^2\;cells\;mL^{-1}$로, St. 3에서 $5.9{\times}10^2\;cells\;mL^{-1}$로 각각 기록되었다. 최고치의 섬모충 개체수는 St. 1에서 2008년 4월 29 일에 관찰되었고, 전체의 99%가 자가영양성 섬모충 Mesodinium rubrum (=Myrionecta rubra) 이였다. Chl-$\alpha$농도는 박테리아와 높은 상관관계가 관찰되었으나, 박테리아는 HNF와 섬모충으로 이어지는 상위 포식자 간의 상관성이 높게 나타나지 않았다. 이것은 상위 포식자로 이어지는 에너지 흐름의 효율이 비교적 낮다는 것을 의미한다. 부영양화된 시화호에서 일차 생산자의 생물량이 높게 관찰되였음에도 불구하고, 미소생물군집의 상위 영양단계 생물과 하위 생물군과의 상관성이 나타나지 않았다는 것은 미소생물환의 먹이 연쇄는 고전적인 먹이망과 같은 간접적인 경로와 더불어 시간 지연의 영향을 받았을 것으로 사료되었다.

Keywords

Acknowledgement

Supported by : 한국학술진흥재단

References

  1. 김영옥, 장민철. 2008. 남해 거제도 장목만에서 부유성 섬모충의 시기별 분포 특성. Ocean and Polar Research 30: 419-426. https://doi.org/10.4217/OPR.2008.30.4.419
  2. 노성유, 한명수. 2008. 팔당호 플랑크톤 군집의 탄소생물량 동태. 한국하천호수학회지 41: 174-187.
  3. 문은영, 김영옥, 공동수, 한명수. 2008. 팔당호 유입부 경안천의 섬모충 플랑크톤 계절적 분포. 한국하천호수학회지 41: 11-18.
  4. 박준건, 김은수, 조성록, 김경태, 박용철. 2003. 시화호 수질의 연변화 양상에 대한 연구. Ocean and Polar Research 25: 459-468. https://doi.org/10.4217/OPR.2003.25.4.459
  5. 손주연, 황순진, 공동수. 2006. 팔당호와 경안천에서 박테리아와 원생생물의 생물량과 세포크기의 시.공간적 분포. 한국육수학회지 39: 379-389.
  6. 신재기, 김동섭, 조경제. 2000. 시화호에서 무기영양염과 식물플랑크톤의 동태. 한국육수학회지 33: 109-118.
  7. 심재형, 신윤근, 조병철. 1993. 만경동진강 염하구에서의 박테리아 및 식물플랑크톤의 역활과 상호관계. 한국해양학회지 28: 107-113.
  8. 심재형, 윤성화, 윤상선, 최동한, 조병철. 1995. 만경동진강 염하구에서 종속영양성 및 혼합영양성 미소 편모류의 수도와 박테리아 섭식. 한국해양학회지 30: 413-425.
  9. 양은진, 최중기, 현정호. 2004. 경기만 수역에서 미세생물 군집의 계절적 변동 연구 I. 박테리아와 종속영양 미소 편모류. 바다 8: 44-57.
  10. 이욱세, 한명수. 2004. 체류시간이 서로 다른 부영양 수계에서 플랑크톤군집의 생태학적 특성. 한국육수학회지 37: 263-271.
  11. 이원제. 2007. 옥계만 단일정점에서 극미소 및 미소플랑크톤의 시간적 분포. 한국환경과학회지 16: 855-863.
  12. 이원제, 신경순, 이재도. 2007. 마산만에서 부유원생생물의 연구. Ocean and Polar Research 29: 401-410. https://doi.org/10.4217/OPR.2007.29.4.401
  13. 이원제. 1993. 경기만 유영생태계에서 부유원생생물의 역활에 관한 연구. 인하대학교 석사학위논문.
  14. 최광순, 김세원, 김동섭, 허우명, 이윤경, 황인서, 이한진. 2008. 물교환이 제한적인 시화호 상류 기수역의 부영양화. 한국하천호수학회지 41: 216-227.
  15. 최동한, 강석원, 송기돈, 허성희, 조병철. 1997. 과영양성 시화호에서 박테리아의 분포 및 성장. 바다 2: 92-100.
  16. 한국수자원공사. 1996. 시화호 수질개선 종합관리대책 기본계획 보고서. 한국수자원공사.
  17. 한국해양연구소. 1997. 시화호의 환경변화조사 및 보전대책 수립에 관한 연구(1차년도). 과학기술처.
  18. 한국해양연구소. 1998. 시화호의 환경변화조사 및 보전대책 수립에 관한 연구(2차년도). 과학기술처.
  19. 해양수산부. 2005. 시화호 해양환경개선 연구용역. 해양수산부.
  20. Azam, F., T. Fenchel, J.G. Field, J.S. Gray, L.A. Meyer-Reil and F. Thingstad. 1983. The ecological role of water column microbes in the sea. Marine Ecology Progress Series 126: 97-102.
  21. Bird, D.F. and J. Kalff. 1984. Empirical relationships between bacterial abundance and chlorophyll concentration in fresh and marine water. Candian Journal of Fisheries Aquatic Sciences 41: 1015-1023. https://doi.org/10.1139/f84-118
  22. Bird, D.F. and J. Kalff. 1986. Bacterial grazing by planktonic algae. Science 231: 493- 495. https://doi.org/10.1126/science.231.4737.493
  23. Caron, D.A. 1983. Technique for enumeration of heterotrophic and phototrophic nanoplankton, using epifluorescent microscopy, and comparison with other procedures. Applied and Environmental Microbiology 46: 491-498.
  24. Cho, B.C., S.C. Na and D.H. Choi. 2000. Active ingestion of fluorescently labeled bacteria by mesopelagic heterotrophic nanoflagellates in the East sea, Korea. Marine Ecology Progress Series 206: 23-32. https://doi.org/10.3354/meps206023
  25. Davis, P.G., D.A. Caron, P.W. Johnson and J.Mc.N. Sieburth. 1985. Phototrophic and apochlorotic components of picoplankton and nanoplankton in the North Atlantic: geographic, vertical, seasonal and diel distributions. Marine Ecology Progress Series 21: 15-26. https://doi.org/10.3354/meps021015
  26. Fenchel, T. 1982. Ecology of heterotrophic microflagellates? Quantitative occurrence and importance as bacterial consumers. Marine Ecology Progress Series 9: 35-42. https://doi.org/10.3354/meps009035
  27. Fenchel, T. and P.R. Jonsson 1988. The functional biology of Strombidium sulcatum, a marine oligotrich ciliate (Ciliophora, Oligotrichina). Marine Ecology Progress Series 48: 1-15. https://doi.org/10.3354/meps048001
  28. Fukami, K., A. Watanabe, S. Fujita, K. Yamaoka and T. Nishijima. 1999. Predation on naked protozoan microzooplankton by fish larvae. Marine Ecology Progress Series 185: 285-291. https://doi.org/10.3354/meps185285
  29. Gameiro, C., P. Cartaxana and V. Brotas. 2007. Environmental drivers of phytoplankton distribution and composition in Tagus Estuary Portugal. Estuarine, Coastal and Shelf Science 75: 21-34. https://doi.org/10.1016/j.ecss.2007.05.014
  30. Gray, J.S., R.S.S. Wu and Y.Y. Or. 2002. Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series 238: 249-279. https://doi.org/10.3354/meps238249
  31. Gustafson, D.E., D.K. Stoecker, M.D. Johnson, W.F. Van Heukelem and K. Snaider. 2000. Crytophyte algae are robbed of their organelles by the marine ciliate Mesodinium rubrum. Nature 405: 1049-1052. https://doi.org/10.1038/35016570
  32. Jardillier, L., M. Basset, I. Domaizon, A. Belan, C. Amblard, M. Richardot and D. Debroas. 2004. Bottom-up and topdown control of bacterial community composition in the euphotic zone of a reservoir. Aquatic Microbial Ecology 35: 259-273. https://doi.org/10.3354/ame035259
  33. Jeffrey, S.W. and G.F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls a, b, ${c_1}$, ${c_2}$ in higher plants, algae and natural phytoplankton. Biochem. Physiologie der Pflanzen 167: 191-194.
  34. Kamphake, L., S. Hannah and J. Cohen. 1967. Automated analysis for nitrate by hydrazine reduction. Water Research 1: 205-216. https://doi.org/10.1016/0043-1354(67)90011-5
  35. Kim, Y.O., E.J. Yang, J.H. Kang, K.S. Shin, M. Chang and C.S. Myung. 2007. Effects of an artificial breakwater on the distributions of planktonic microbial communities. Ocean Science Journal 42: 9-17. https://doi.org/10.1007/BF03020906
  36. Kisand, V. and P. Zingel. 2000. Dominance of ciliate grazing on bacteria during spring in a shallow eutrophic lake. Aquatic Microbial Ecology 22: 135-142. https://doi.org/10.3354/ame022135
  37. Kormas, K.Ar., K. Kapiris, M. Thessalou-Legaki and A. Nicolaidou. 1998. Quantitative relationships between phytoplankton, bacter and protists in an Aegean semienclosed embayment (Maliakos Gulf, Greece). Aquatic Microbial Ecology 15: 255-264. https://doi.org/10.3354/ame015255
  38. Lee, C.W., I. Kudo, M. Yanada and Y. Maita. 2001. Bacterial abundance and production and heterotrophic nanoflagellate abundance in subarctic coastal waters (Western North Pacific Ocean). Aquatic Microbial Ecology 23: 263-271. https://doi.org/10.3354/ame023263
  39. Marshall, H.G. and R.W. Alden. 1990. A comparison of phytoplankton assemblages and environmental relationships in three estuarine rivers of the lower Chesapeake bay. Estuaries 13: 287-300. https://doi.org/10.2307/1351920
  40. McLusky, D.S. and M. Elliott. 2004. The estuarine ecosystem ecology, threats, and management. Oxford University Press.
  41. Mostajir, B., J.R. Dolan and F. Rassoulzadegan. 1995. Seasonl variations of pico- and nano-detrial particles (DAPI yellow particles, DYP) in the Ligurian Sea (NW Mediterranean). Aquatic Microbial Ecology 9: 267-277. https://doi.org/10.3354/ame009267
  42. Naganuma, T. and S. Miura. 1997. Abundance, production and viability of bacterioplankton in the Seto Island Sea, Japan. Journal of Oceanography 53: 435-442.
  43. Park, J.S. and B.C. Cho. 2002. Active heterotrophic nanoflagellates in the hypoxic water-column of the eutrophic Masan Bay, Korea. Marine Ecology Progress Series 230: 35-45. https://doi.org/10.3354/meps230035
  44. Pomeroy, L.R. and D. Deibel. 1986. Temperature regulation of bacterial activity during the spring bloom in Newfoundland coastal waters. Science 233: 359-361. https://doi.org/10.1126/science.233.4761.359
  45. Poter, K.G. and Y.S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943-948. https://doi.org/10.4319/lo.1980.25.5.0943
  46. Sherr, B.F. and E.B. Sherr. 1988. Role of microbes in pelagic food webs: a revised concept. Limnology and Oceanography 33: 1225-1227. https://doi.org/10.4319/lo.1988.33.5.1225
  47. Suzuki, T. and A. Taniguchi. 1998. Standing crops and vertical distribution of four groups of marine plabktonic ciliates in relation to phytoplankton chlorophyll a. Marine Biology 132: 375-382. https://doi.org/10.1007/s002270050404
  48. Weisse, T. 1991. The annual cycle of heterotrophic freshwater nanoflagellates: role of bottom-up versus top-down control. Journal of Plankton Research 13: 167-185. https://doi.org/10.1093/plankt/13.1.167
  49. Yih, W.H., H.S. Kim, H.J. Jeong, G.M. Myung and Y.G. Kim. 2004. Ingestion of crytophyte cells by the marine photosysthetic ciliate Mesodinium rubrum. Aquatic Microbial Ecology 36: 165-170. https://doi.org/10.3354/ame036165