• Title/Summary/Keyword: trolley

Search Result 195, Processing Time 0.032 seconds

Kinematic Modeling of a Track Trolley Using Extended Kalman Filter (확장 칼만필터를 이용한 궤도틀림 트롤리의 운동학적 모형화)

  • Lee, Jun S.;Choi, Il Yoon;Kim, Sun Hee;Um, Ju Hwan
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.5
    • /
    • pp.447-456
    • /
    • 2015
  • Continuous as well as discrete measurement of the track geometry based on a track trolley are investigated to enhance the efficiency of the trolley and to minimize the measurement errors. A new kinematic model based on the track coordinates involving transition and circular curves is developed to improve the accuracy of the measurement; a nonlinear Extended Kalman Filter (EKF) is employed to linearize the governing equations. The proposed model is verified with the ideal track geometry in terms of both discrete and continuous measurement. Comparison with the previous models is also made to prove the applicability of the kinematic model.

Anti-Sway Control System Design for the Container Crane

  • An, Sang-Back;Kim, Young-Bok;Kang, Gi-Bong;Zhai, Guisheng
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1404-1409
    • /
    • 2003
  • The sway control problem of the pendulum motion of the container crane hanging on the trolley, which transports containers from the container ship to the truck, is considered in this paper. In the container crane control problem, the main issue is to suppress the residual swing motion of the container at the end of the acceleration, deceleration or the case of that the unexpected disturbance input exists. For this problem, in general, the trolley motion control strategy is introduced and applied to real plants. In this paper, we suggest a new type of swing motion control system for a crane system in which a small auxiliary mass is installed on the spreader. The actuator reacting against the auxiliary mass applies inertial control forces to the spreader of the container crane to reduce the swing motion in the desired manner. In this paper, we consider that the length of the rope varies is we design the anti-sway control system based on LMI(linear matrix inequality) approach. And, it will be shown that the proposed control strategy is useful and it can be easily applicable to the real world. So, in this study, we investigate usefulness of the proposed anti-sway system and evaluate system performance from simulation and experimental studies.

  • PDF

A Study on the Trolley Sliding Condition Inspection System

  • Chang, ChinYoung;Kim, ChanSam;Jung, NoGeon;Na, YeonIl;Kim, YangSu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.7 no.2
    • /
    • pp.109-112
    • /
    • 2015
  • The Korean electric railway is growing rapidly such as speed of 300km/h in high speed section and 230km/h in the conventional railway section. But, power supply failure occurs because of loss of contact, defective catenary system and high speed vehicle. Therefore preventive maintenance way based reliability has been applied. Typical example is the facility inspection method using trolley inspection system. But it is required differentiated inspection method to prevent problem such as inspection errors. In this paper, a study on the trolley sliding condition inspection system using monitoring techniques is performed for performance enhancement of inspection system. It proposed the efficient maintenance method through monitoring the deviation and height of contact wire after installing inspection system on the top of train which operates in the metropolitan area. Inspection errors were decreased by virtually monitoring the video of faulty facilities. Also those facilities were identified through the impact sound analysis and tests at the main catenary section.

Anti-Sway Tracking Control of Container Cranes with Friction Compensation (마찰 보상을 갖는 컨테이너 크레인의 흔들림 억제 추종 제어)

  • Baek, Woon-Bo;Shin, Jin-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.6
    • /
    • pp.878-884
    • /
    • 2012
  • In this paper, we consider the sway suppression control problem for container cranes with the frictions between the trolley and the rail. If the friction effects in the system can be modelled, there is an improved potential to design controllers that can cancel the effects. The proposed control improves the trolley positioning and sway suppressing against various frictions. The proposed synthesis combines a variable structure control and the adaptive control to cope with various frictions including the unknown constants. First, the variable structure control with the simple switching action is designed, which is based on a class of feedback lineariztion methods for the fast stabilization of the under-actuated sway dynamics of container. Second, the adaptive control with a parameter estimation is designed, which is based on Lyapunov stability methods for suppressing the oscillation of the trolley travelling, especially due to Coulomb friction in the vicinity of the target position. The asymptotic stability of the overall closed-loop system is assured irrespective of variations of rope length. Simulation are shown under initial sway, external wind disturbances, and various frictions.

A Study on Dynamic Modeling and Vibration Analysis of Gantry Robot (겐트리 로봇의 동적 모델링 및 진동해석)

  • Cho, Chang-Je;park, Dong-Jun;Yang, Jun-Seok;koo, Young-mok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.4
    • /
    • pp.211-216
    • /
    • 2014
  • In general, gantry robot is very useful handling of heavy objects. But rope-driven yard cranes must have a little of sway and skew motion because ropes are passive mechanical device. So many researches have been concentrated on anti-sway algorithm controlling trolley speed. These approaches require sway angle. But it is very difficult to know sway angle and its derivative. Therefore control algorithm of trolley speed is not practical in general. On the contrary, control strategy using auxiliary rope is very useful to sway control of yard crane because rope length is shorter than quay-side container cranes. In this paper, we derive equations of motion of trolley system which have anti-sway controller to use auxiliary rope. And we propose the control strategy and analyse the behavior of the proposed system.

Research on Configuration Optimization of Overlap Section in Overhead Catenary System for High-speed Railway (전차선로 속도향상에 따른 오버랩 구간(Overlap section) 경간 구성 기법)

  • Choi, Tae-su;Choi, Kyu-Hyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.6
    • /
    • pp.975-980
    • /
    • 2017
  • Overhead catenary system of electric railway has overlap sections which devide and tighten trolley wire supplying electric power to train, where current collection performances may become worse according to railway speed-up. Current collection tests conducted at 400 km/h test-bed section of Honam high-speed railway show that balanced line arrangement at overlap section is needed to secure current collection without arc generation between trolley wire and train current collection device. This paper proposes a design procedure of the overlap section to allow for tension increase and uplift of the trolley wires according to railway speed-up. By applying the proposed procedure to the overhead catenary system of Honam high-speed railway, it is suggested that the minimum span length should be 33.2 m for railway speed-up to 350 km/h and 43.7 m for speed-up to 400 km/h.

Initial Firing Angle Control of Parallel Multi-Pulse Thyristor Dual Converter for Urban Railway Power Substations

  • Kim, Sung-An;Han, Sung-Wo;Cho, Yun-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.674-682
    • /
    • 2017
  • This paper presents an optimal initial firing angle control based on the energy consumption and regenerative energy of a parallel multi-pulse thyristor dual converter for urban railway power substations. To prevent short circuiting the thyristor dual converter, a hysteresis band for maintaining a zero-current discontinuous section (ZCDS) is essential during mode changes. During conversion from the ZCDS to forward or reverse mode, the DC trolley voltage can be stabilized by selecting the optimal initial firing angle without an overshoot and slow response. However, the optimal initial firing angle is different depending on the line impedance of each converter. Therefore, the control algorithm for tracking the optimal initial firing angle is proposed to eliminate the overshoot and slow response of DC trolley voltage. Simulations and experiments show that the proposed algorithm yields the fastest DC voltage control performance in the transient state by tracking the optimal firing angle.

Design of the Anti-sway Controller for a Boom Type Crane Using the LQ Control (LQ 제어를 이용한 붐형 크레인의 흔들림 제어기 설계)

  • Son, J.K.;Hong, J.P.;Kwon, S.J.
    • Journal of Power System Engineering
    • /
    • v.7 no.4
    • /
    • pp.74-81
    • /
    • 2003
  • An LQ controller design method is proposed for effective anti-sway control of boom type crane in this paper. It is important for high productivity that the sway of a load is controlled as fast as possible when the trolley arrives to the destination with maximum velocity. To prove the effectiveness of the proposed LQ controller. simulations and experiments using the boom type crane as experimental device is carried out. Tracking performance for a step type reference and robustness for the change of working environment such as the change of load weight and parameters produced by a wire rope and disturbance by the wind arc proved by the experiment. It will be examined that boom type crane can be applied to industrial fields through experiment in this paper.

  • PDF

The Modelling and Position Control of Overhead Cranes (천정 크레인의 모델링 및 위치제어)

  • Lee, Jong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.12
    • /
    • pp.1919-1925
    • /
    • 2001
  • Overhead cranes consist of trolley, girder, rope, objects, trolley motor, girder motor, and hoist motor. If objects are regarded as mass point, and the acceleration of hoisting motion for objects is neglected, analytical model of overhead cranes becomes a nonlinear model because the length of a rope changes. Equations of motion this model is derived of simultaneous differential equations fur motors and object. Positions of the model are controlled by optimal inputs which obtain from a nonlinear optimal control method. From the results of computer simulation, even if initial states of objects suing, it is founded that position of overhead cranes is controlled, and that swing of objects is suppressed.