• Title/Summary/Keyword: trip length frequency distribution

Search Result 9, Processing Time 0.024 seconds

High Speed Rail Station Distric Using Entropy Model Study to Estimate the Trip Distribution (엔트로피 모형을 활용한 고속철도 역세권 통행분포 추정에 관한 연구)

  • Cho, Hangung;Kim, Sigon;Kim, Jinhowan;Jeon, Sangmin
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6D
    • /
    • pp.679-686
    • /
    • 2012
  • KTX step 1 April 2004, after the opening, the second phase of the project was opened in November 2010. High-speed rail after the opening and continue to increase the demand of high-speed rail, Have the speed of competitive advantage compared too the means of transportation. The opening of these high-speed rail has led to changes of the move, the company's position, and the spatial structure of the population of reorganization, such as the social, economic, transportation. In this study, survey data using the High Speed Rail Station EMME/2 of the program to take advantage of the 2-Dimentional Blancing trip distribution to investigate the passage through the trip distribution by the estimation of the parameters of the model to estimate the distribution of the means of access and high-speed rail station to reproduce and Analysis of the results by means of access parameters (${\theta}$) autos 0.0395, buses 0.0390, subway 0.0650, taxi 0.0415, the frequency distribution (Trip Length Frequency Distribution: TLFD) were analyzed survey data value model with the results of comparing $R^2$ cars analysis and model values similar survey data 0.909 bus 0.923, subway 0.745 to 0.922, taxi, F test P value analysis is smaller than 0.05 at the 95% confidence level as a note that was judged to have been. Trip frequency distribution analysis, but in the future, set the unit to 5km-trip frequency distribution middle zone Units from small zone units (administrative district) segmentation research is needed, and can reflect the trip distance 0~5 km interval combined function to take advantage of the gravity model and the 3-Dimentional Blancing applied research is needed to be considered.

A study on improving the evaluation of motorway functions using Trip Length Frequency Distribution(TLFD) (통행거리빈도분포를 활용한 고속도로 기능 평가 개선 연구)

  • Kwon, Ceholwoo;Yoon, Byoungjo
    • Journal of Urban Science
    • /
    • v.11 no.2
    • /
    • pp.9-17
    • /
    • 2022
  • The purpose of this study is to develop an index for evaluating the function of a new motorway using the travel distance frequency distribution (TLFD) calculated using the vehicle travel route big data, and to overcome the limitations of the evaluation through the existing traffic volume. The mobility evaluation index of motorways was developed by applying it to the TLFD data table in 2019. The smaller the value of the mobility evaluation index of the link is calculated, the more it is a link with mainly short-distance travel, and the higher the value of the mobility evaluation index, the more it means a link with mainly long-distance travel. The accessibility evaluation index was calculated through the result of the mobility evaluation index of all motorways developed, and all motorways were grouped into three groups using K-means clustering. Group A was found to exist inside a large city and consisted of motorways with many short-distance traffic, Group B was investigated as acting as an arterial between groups, and Group C was classified as a motorway consisting mainly of long-distance traffic connecting large cities and large cities. This study is significant in developing a new motorway function evaluation index that can overcome the limitations of motorway function evaluation through the existing traffic volume. It is expected that this study can be a reasonable comprehensive indicator in the operation and planning process of motorways.

A Sensitivity Analysis of Traffic Assignment (교통배분의 민감도 분석에 관한 연구)

  • 장덕오
    • Journal of Korean Society of Transportation
    • /
    • v.11 no.3
    • /
    • pp.31-48
    • /
    • 1993
  • 본 연구에서는 다른 기종점 통행표(Trip Matrices)들을 같은 교통망(Network)에 배정하였을 때 교통분배 결과의 차이점들을 분석하고 교통분배의 민감도를 비교하였다. 전통적인 4단계 교통수요 추정에 의해서 산출된 교통배분을 비교의 기본자료로 이용했다. 또한 본 연구에서는 교통배분의 결과를 평가하기 위해 주로 사용하는 측정효과들과 교통배분의 기법들(Traffic Assignment Techniques)의 민감도도 연구조사하였다. 본 연구를 통하여 총교통량(Total Trips)과 통행길이빈도(Trip Length Frequency)제약에 의해 임의로 선출된 기종점 통행표를 이용한 교통배분의 결과는 전통적인 4단계 교통수요 측정에 의해 산출된 교통배분 및 조사교통량(Counted Traffic Volumes)에 매우 유사한 결과가 나왔다. 결론적으로 죤별 통행발생량에서의 오차는 교통배분의 본성적인 집계특성(Aggregative Nature)에 의하여 그 심각성이 감소되는 경향이 있다. 이것은 즉 앞단계(Trip Generation and Distribution Phases)에서 전통적으로 요구되어지는 정밀도가 없어도 적절한 교통배분기법을 사용함으로써 좋은 결과를 산출할 수 있다는 것을 암시한다.

  • PDF

Evaluation on the traffic count based O/D matrix using Trip Length Frequency Distribution (통행시간분포를 이용한 교통량기반 추정O/D의 신뢰성 평가에 관한 연구)

  • 이승재;손의영;김종형
    • Journal of Korean Society of Transportation
    • /
    • v.18 no.2
    • /
    • pp.53-62
    • /
    • 2000
  • 현재까지 개발된 교통량 기반 O/D 추정기법들은 추정된 O/D의 신뢰성을 평가하는 기준으로 통계적 오차분석을 통한 참O/D(true O/D)와 추정O/D간의 타이를 분석하는 방법이 주류를 이루었다. 문제는 이러한 오차분석기법들이 현실적인 대규모 교통망상에 적용될 때 탐O/D를 알 수 없을 뿐만 아니라, 알 수 있다고 하더라도 추정된 O/D와의 비교 평가시에 그러한 평가방법으로 추정된 O/D의 신뢰성을 부여하기에는 많은 문제점을 가지고 있다는 점이다. 통행조사에 의한 O/D는 비록 포함되어 있는 정보가 과거의 정보라고 할지라도 현재의 통행흐름에 대하여 가장 많은 정보를 가지고 있다고 할 수 있다. 즉, 선행O/D의 정보를 크게 변화시키지 않으면서도 관측교통량으로 O/D를 추정할 수 있는 방법이 이 관점에서 매우 뛰어난 추정방법이라고 할 수 있다. 이러한 관점에서 본 연구에서는 선행O/D정보 중 통행수요예측시 가장 중요한 지표의 하나인 통행시간빈도분포 (TriP Length Frequency Distribution:TLFD)를 이용하여 추정O/D의 신뢰성 지표로 삼았다. TLFD는 4단계 모형에서 통행분포(trip distribution)시 모형을 정산하는 데 사용되는 방법으로써 죤간 통행시간을 단위별로 나누어 조사된 통행시간분포와 추정된 O/D의 통행시간분포가 유사한 지를 살피는 방법이라고 할 수 있다. 조사된 TLFD와 추정O/D의 TLFD가 유사한 모양을 이를 때 추정O/D의 신뢰성이 높다고 인정한다. 또한 TLFD는 전통적으로 조사된 표본O/D를 전 수화하는데 이용되어 그 타당성 또한 많이 검증되어 왔다. 그러나 아직까지 TLFD를 가지고 교통량으로 O/D를 추정하는 모형의 결과를 검증한 연구 결과는 없는 실정이다. 따라서, 본 연구에서는 최종적인 이러한 분석결과를 평가할 수 있을 뿐 아니라, 평가된 지표가 신뢰할 만한 수준이 아니라면, 추정된 결과를 보정할 수 있는 가능성을 제시하고자 한다.

  • PDF

Origin and destination matrix estimation using Toll Collecting System and AADT data (관측 TCS data 및 AADT 교통량을 이용한 기종점 교통량 보정에 관한 연구)

  • 이승재;장현호;김종형;변상철;이헌주;최도혁
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.5
    • /
    • pp.49-59
    • /
    • 2001
  • In the transportation planning process, origin and destination(O-D) trip matrix is one of the most important elements. There have been developments and applications of the methodology to adjust old matrices using link traffic counts. Commonly, the accuracy of an adjusted O-D matrix depends very much on the reliability of the input data such as the numbers and locations of traffic counting points in the road network. In the real application of the methodology, decisions on the numbers and locations of traffic counting points are one of the difficult problems, because usually as networks become bigger, the numbers of traffic counting points are required more. Therefore, this paper investigates these issues as an experiment using a nationwide network in Korea. We have compared and contrasted the set of link flows assigned by the old and the adjusted O-D matrices with the set of observed link flows. It has been analyzed by increasing the number of the traffic counting points on the experimental road network. As a result of these analyses, we can see an optimal set of the number of counting links through statistical analysis, which are approximately ten percentages of the total link numbers. In addition, the results show that the discrepancies between the old and the adjusted matrices in terms of the trip length frequency distributions and the assigned and the counted link flows are minimized using the optimal set of the counted links.

  • PDF

DEVELOPMENT OF STATEWIDE TRUCK TRAFFIC FORECASTING METHOD BY USING LIMITED O-D SURVEY DATA (한정된 O-D조사자료를 이용한 주 전체의 트럭교통예측방법 개발)

  • 박만배
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.101-113
    • /
    • 1995
  • The objective of this research is to test the feasibility of developing a statewide truck traffic forecasting methodology for Wisconsin by using Origin-Destination surveys, traffic counts, classification counts, and other data that are routinely collected by the Wisconsin Department of Transportation (WisDOT). Development of a feasible model will permit estimation of future truck traffic for every major link in the network. This will provide the basis for improved estimation of future pavement deterioration. Pavement damage rises exponentially as axle weight increases, and trucks are responsible for most of the traffic-induced damage to pavement. Consequently, forecasts of truck traffic are critical to pavement management systems. The pavement Management Decision Supporting System (PMDSS) prepared by WisDOT in May 1990 combines pavement inventory and performance data with a knowledge base consisting of rules for evaluation, problem identification and rehabilitation recommendation. Without a r.easonable truck traffic forecasting methodology, PMDSS is not able to project pavement performance trends in order to make assessment and recommendations in the future years. However, none of WisDOT's existing forecasting methodologies has been designed specifically for predicting truck movements on a statewide highway network. For this research, the Origin-Destination survey data avaiiable from WisDOT, including two stateline areas, one county, and five cities, are analyzed and the zone-to'||'&'||'not;zone truck trip tables are developed. The resulting Origin-Destination Trip Length Frequency (00 TLF) distributions by trip type are applied to the Gravity Model (GM) for comparison with comparable TLFs from the GM. The gravity model is calibrated to obtain friction factor curves for the three trip types, Internal-Internal (I-I), Internal-External (I-E), and External-External (E-E). ~oth "macro-scale" calibration and "micro-scale" calibration are performed. The comparison of the statewide GM TLF with the 00 TLF for the macro-scale calibration does not provide suitable results because the available 00 survey data do not represent an unbiased sample of statewide truck trips. For the "micro-scale" calibration, "partial" GM trip tables that correspond to the 00 survey trip tables are extracted from the full statewide GM trip table. These "partial" GM trip tables are then merged and a partial GM TLF is created. The GM friction factor curves are adjusted until the partial GM TLF matches the 00 TLF. Three friction factor curves, one for each trip type, resulting from the micro-scale calibration produce a reasonable GM truck trip model. A key methodological issue for GM. calibration involves the use of multiple friction factor curves versus a single friction factor curve for each trip type in order to estimate truck trips with reasonable accuracy. A single friction factor curve for each of the three trip types was found to reproduce the 00 TLFs from the calibration data base. Given the very limited trip generation data available for this research, additional refinement of the gravity model using multiple mction factor curves for each trip type was not warranted. In the traditional urban transportation planning studies, the zonal trip productions and attractions and region-wide OD TLFs are available. However, for this research, the information available for the development .of the GM model is limited to Ground Counts (GC) and a limited set ofOD TLFs. The GM is calibrated using the limited OD data, but the OD data are not adequate to obtain good estimates of truck trip productions and attractions .. Consequently, zonal productions and attractions are estimated using zonal population as a first approximation. Then, Selected Link based (SELINK) analyses are used to adjust the productions and attractions and possibly recalibrate the GM. The SELINK adjustment process involves identifying the origins and destinations of all truck trips that are assigned to a specified "selected link" as the result of a standard traffic assignment. A link adjustment factor is computed as the ratio of the actual volume for the link (ground count) to the total assigned volume. This link adjustment factor is then applied to all of the origin and destination zones of the trips using that "selected link". Selected link based analyses are conducted by using both 16 selected links and 32 selected links. The result of SELINK analysis by u~ing 32 selected links provides the least %RMSE in the screenline volume analysis. In addition, the stability of the GM truck estimating model is preserved by using 32 selected links with three SELINK adjustments, that is, the GM remains calibrated despite substantial changes in the input productions and attractions. The coverage of zones provided by 32 selected links is satisfactory. Increasing the number of repetitions beyond four is not reasonable because the stability of GM model in reproducing the OD TLF reaches its limits. The total volume of truck traffic captured by 32 selected links is 107% of total trip productions. But more importantly, ~ELINK adjustment factors for all of the zones can be computed. Evaluation of the travel demand model resulting from the SELINK adjustments is conducted by using screenline volume analysis, functional class and route specific volume analysis, area specific volume analysis, production and attraction analysis, and Vehicle Miles of Travel (VMT) analysis. Screenline volume analysis by using four screenlines with 28 check points are used for evaluation of the adequacy of the overall model. The total trucks crossing the screenlines are compared to the ground count totals. L V/GC ratios of 0.958 by using 32 selected links and 1.001 by using 16 selected links are obtained. The %RM:SE for the four screenlines is inversely proportional to the average ground count totals by screenline .. The magnitude of %RM:SE for the four screenlines resulting from the fourth and last GM run by using 32 and 16 selected links is 22% and 31 % respectively. These results are similar to the overall %RMSE achieved for the 32 and 16 selected links themselves of 19% and 33% respectively. This implies that the SELINICanalysis results are reasonable for all sections of the state.Functional class and route specific volume analysis is possible by using the available 154 classification count check points. The truck traffic crossing the Interstate highways (ISH) with 37 check points, the US highways (USH) with 50 check points, and the State highways (STH) with 67 check points is compared to the actual ground count totals. The magnitude of the overall link volume to ground count ratio by route does not provide any specific pattern of over or underestimate. However, the %R11SE for the ISH shows the least value while that for the STH shows the largest value. This pattern is consistent with the screenline analysis and the overall relationship between %RMSE and ground count volume groups. Area specific volume analysis provides another broad statewide measure of the performance of the overall model. The truck traffic in the North area with 26 check points, the West area with 36 check points, the East area with 29 check points, and the South area with 64 check points are compared to the actual ground count totals. The four areas show similar results. No specific patterns in the L V/GC ratio by area are found. In addition, the %RMSE is computed for each of the four areas. The %RMSEs for the North, West, East, and South areas are 92%, 49%, 27%, and 35% respectively, whereas, the average ground counts are 481, 1383, 1532, and 3154 respectively. As for the screenline and volume range analyses, the %RMSE is inversely related to average link volume. 'The SELINK adjustments of productions and attractions resulted in a very substantial reduction in the total in-state zonal productions and attractions. The initial in-state zonal trip generation model can now be revised with a new trip production's trip rate (total adjusted productions/total population) and a new trip attraction's trip rate. Revised zonal production and attraction adjustment factors can then be developed that only reflect the impact of the SELINK adjustments that cause mcreases or , decreases from the revised zonal estimate of productions and attractions. Analysis of the revised production adjustment factors is conducted by plotting the factors on the state map. The east area of the state including the counties of Brown, Outagamie, Shawano, Wmnebago, Fond du Lac, Marathon shows comparatively large values of the revised adjustment factors. Overall, both small and large values of the revised adjustment factors are scattered around Wisconsin. This suggests that more independent variables beyond just 226; population are needed for the development of the heavy truck trip generation model. More independent variables including zonal employment data (office employees and manufacturing employees) by industry type, zonal private trucks 226; owned and zonal income data which are not available currently should be considered. A plot of frequency distribution of the in-state zones as a function of the revised production and attraction adjustment factors shows the overall " adjustment resulting from the SELINK analysis process. Overall, the revised SELINK adjustments show that the productions for many zones are reduced by, a factor of 0.5 to 0.8 while the productions for ~ relatively few zones are increased by factors from 1.1 to 4 with most of the factors in the 3.0 range. No obvious explanation for the frequency distribution could be found. The revised SELINK adjustments overall appear to be reasonable. The heavy truck VMT analysis is conducted by comparing the 1990 heavy truck VMT that is forecasted by the GM truck forecasting model, 2.975 billions, with the WisDOT computed data. This gives an estimate that is 18.3% less than the WisDOT computation of 3.642 billions of VMT. The WisDOT estimates are based on the sampling the link volumes for USH, 8TH, and CTH. This implies potential error in sampling the average link volume. The WisDOT estimate of heavy truck VMT cannot be tabulated by the three trip types, I-I, I-E ('||'&'||'pound;-I), and E-E. In contrast, the GM forecasting model shows that the proportion ofE-E VMT out of total VMT is 21.24%. In addition, tabulation of heavy truck VMT by route functional class shows that the proportion of truck traffic traversing the freeways and expressways is 76.5%. Only 14.1% of total freeway truck traffic is I-I trips, while 80% of total collector truck traffic is I-I trips. This implies that freeways are traversed mainly by I-E and E-E truck traffic while collectors are used mainly by I-I truck traffic. Other tabulations such as average heavy truck speed by trip type, average travel distance by trip type and the VMT distribution by trip type, route functional class and travel speed are useful information for highway planners to understand the characteristics of statewide heavy truck trip patternS. Heavy truck volumes for the target year 2010 are forecasted by using the GM truck forecasting model. Four scenarios are used. Fo~ better forecasting, ground count- based segment adjustment factors are developed and applied. ISH 90 '||'&'||' 94 and USH 41 are used as example routes. The forecasting results by using the ground count-based segment adjustment factors are satisfactory for long range planning purposes, but additional ground counts would be useful for USH 41. Sensitivity analysis provides estimates of the impacts of the alternative growth rates including information about changes in the trip types using key routes. The network'||'&'||'not;based GMcan easily model scenarios with different rates of growth in rural versus . . urban areas, small versus large cities, and in-state zones versus external stations. cities, and in-state zones versus external stations.

  • PDF

Travel Demand Estimation using Traffic Counts on the Large Scale Network (대규모교통망에서 관측교통량기반 통행수요추정)

  • 김종형;이승재;조범철
    • Journal of Korean Society of Transportation
    • /
    • v.19 no.2
    • /
    • pp.43-52
    • /
    • 2001
  • 대부분의 관측교통량기반 수요추정기법은 소규모 및 중규모 교통망 등의 상대적으로 규모가 작은 교통망에서 기본적으로 가정된 수요를 가지고 얻은 추정O/D를 기본O/D와 비교하여 그 추정의 정확성이 어느 정도인가를 오차분석법 등을 이용하여 비교.분석하는 것이 그 주요한 분석방향이라고 할 수 있었다. 이러한 접근법은 실제 현실에서는 알 수 없는 참O/D나 참관측교통량을 가정하고 제시된 모형을 면밀히 관찰하여 모형의 장단점이 무엇인지를 파악하거나 타모형과의 비교.분석을 용이하게 하고자 할 때 많이 이용된다. 그러나 이러한 가정된 교통망이나 참O/D(true O/D) 등은 모형의 적용가능성을 살필 경우에 이용 가능한 방법이라고 할 수 있지만, 참O/D를 알지 못하는 현실상황(대규모 교통망)에서는 추정O/D의 신뢰성을 평가하기란 매우 힘든 작업이거나 거의 불가능한 일이라 할 수 있다. 이러한 문제점을 보완하고자 본 연구에서는 서울시의 1996년도 교통센서스 자료를 이용하여 가정된 수요가 아닌 실제적이고 현실적인 자료를 가지고 대규모 교통망에서 이용될 수 있는 모형을 살펴보았다. 연구방법은 대규모 교통망에 기존의 단일차종기반모형과 본 연구에서 제시한 다차종(multiclass)기반모형을 적용하여 추정된 O/D에 TLFD(Trip Length Frequency Distribution)개념을 이용하여 추정된 O/D의 신뢰성을 평가하고자 하였다. 또한, $R^2$를 이용하여 모형 적용 전후의 관측교통량과 배분교통량을 비교하여 추정력을 분석하였다. 본 연구에서는 단일차종기반모형보다는 차종간 혼잡효과 및 노선선택비율을 차종별로 감안할 수 있는 다차종기반모형이 대규모교통망에서는 보다 적절한 결과를 나타내는 것으로 분석되었다.

  • PDF

3-Dimensional Balancing Technique for Nationwide Travel Demand Model using Toll Collecting System Data (3-D 기법을 이용한 TCS기반 전국 교통수요 추정 연구)

  • 이승재;이헌주
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.4
    • /
    • pp.63-72
    • /
    • 2002
  • We applied 3-D balancing technique to estimate nationwide travel demand using travel behavior of Toll Collecting System data, socio-economic data in the region, and the data of several organizations connected with travel demand estimation. The results from this study were validated by the indices of RMSE(Root Mean Square Error), TLFD(Trip Length Frequency Distribution). TCS based inter-city average travel to measure of reliability and adequacy of estimated travel demand. Finally, 3-D technique seems to reflect more travel behavior of TCS OD than 2-D technique, but we cannot assert that 3-D technique superior to 2-D technique.

Home-based OD Matrix Production and Analysis Using Mobile Phone Data (이동통신 자료를 활용한 가정기반 OD 구축 및 분석)

  • Kim, Kyoungtae;Oh, Dongkyu;Lee, Inmook;Min, Jae Hong
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.5
    • /
    • pp.656-662
    • /
    • 2016
  • Based on time dependent location data of mobile phone users, users' ODs were produced after tracing their travel route and inducing their origins and destinations. System considered average signalizing frequency, which means that the longer the travel length is the more frequent the signal is. This is a home-based OD and is limited to the Seoul Metropolitan area. The OD matrix from the mobile phone data which was aggregated to the cell and transformed to the 'Dong' area, was compared to the KTDB OD. The results can be analyzed and it was determined that they are highly correlated because individual coefficients are 0.98 and 0.85, the former between the OD of this study and the KTDB Si/Gun/Gu unit area OD and the latter between the OD of this study and the Dong unit area KTDB OD.