• Title/Summary/Keyword: tribology tests

Search Result 340, Processing Time 0.028 seconds

Nano Wear Behavior of a-C Films with Variation of Surface Roughness (표면거칠기의 변화에 따른 a-C 박막의 나노마멸 거동)

  • 채영훈;장영준;나종주;김석삼
    • Tribology and Lubricants
    • /
    • v.20 no.3
    • /
    • pp.125-131
    • /
    • 2004
  • Nano-wear behavior of amorphous carbon films was studied by Atomic Force Microscopy. The a-C films are deposited on Si(100) substrate by DC magnetron sputtering method. The influences of different surface roughness on the nano-wear are investigated. Nano-wear tests were carried out using a very sharp diamond coated tip. Its spring constant was 1.6 N/m and radius of curvature was 110 nm. Normal force used in the wear tests ranged 0 to 400 nN. It was found that surface depression occurred during scratching because of plastic deformation and abrasive wear (cutting St ploughing). Wear depth increased linearly with normal force. Changing the surface roughness variables according to the bias pulse control, the less surface roughness decreased the wear depth. The thickness did not affect the wear resistance.

Durability and Retention of Performance in Hydraulic Fluid

  • Tam Nelson
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.53-66
    • /
    • 2005
  • [ $\cdot$ ] Performance can be evaluated beyond specification and requirements using existing pump tests $\cdot$ Bench testing of stressed fluids can deonstrate Retention of Performance

  • PDF

Development of ILSAC GF3 Gasoline Engine Oil (ILSAC GF3 가솔린엔진유 개발)

  • 류재곤;조연근;문우식
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.06a
    • /
    • pp.143-148
    • /
    • 2001
  • ILSAC GF 3/API SL specification will be adopted in July 2001. The background and characteristics of GF3 specification is reviewed. GF3 specification consists of five new engine tests, two new bench tests and new limits on three bench tests currently used to define ILSAC GF-2. GF 3 engine oil shows good performance compared to GF2 engine oil in fuel efficiency, protecting ability the emission catalyst and high temperature oxidation stability.

  • PDF

Gasoline engine black sludge - occurrence, causes & testing

  • Lewis, Eric-J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1987.11a
    • /
    • pp.1-27
    • /
    • 1987
  • 1. Gasoline engine sludge is a major worldwide problem 2. U.S. and European sludge have similarities 3. Stop-go driving and longer oil drains make the problem worse 4. Fuel is a major influencing factor 5. Increased use of cracked components may be cause 6. Sludge can be peproduced in controlled field tests 7. Daimler benz M102E and ford PV-2 (VE) tests have been developed to overcome problem by higher oil quality 8. The M102E and PV-2 respond in a similar way to increased dispersancy 9. High dispersant ocp viscosity modifiers appear to have unique adbantage in both tests

  • PDF

Nanotribological Characteristics of Plasma Treated Hydrophobic Thin Films on Silicon Surfaces using SPM (SPM을 이용한 Si 표면위에 플라즈마 처리된 소수성 박막의 나노 트라이볼로지적 특성 연구)

  • 윤의성;양승호;공호성;고석근
    • Tribology and Lubricants
    • /
    • v.19 no.2
    • /
    • pp.109-115
    • /
    • 2003
  • Nanotribological characteristics between a Si$_3$N$_4$ AFM tip and hydrophobic thin films were experimentally studied. Tests were performed to measure the nano adhesion and friction in both AFM (atomic force microscope) and LFM (lateral force microscope) modes in various .ranges of normal load. Plasma-modified thin polymeric films were deposited on Si-wafer (100). Results showed that wetting angle of plasma-modified thin polymeric film increased with the treating time, which resulted in the hydrophobic surface and the decrease of adhesion and friction. Nanotribological characteristics of these surfaces were compared with those of other hydrophobic surfaces, such as DLC, OTS and IBAD-Ag coated surfaces. Those of OTS coated surface were superior to those of others, though wetting angle of plasma-modified thin polymeric film is higher.

Adhesive, Friction, and Deformation Behaviors of Pig Skin under Various Exposure Times to Air (돼지피부의 공기노출 시간에 따른 응착, 마찰 및 변형거동)

  • Shin, Hyunduk;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.30 no.1
    • /
    • pp.36-45
    • /
    • 2014
  • Understanding steel/skin contact phenomena is important for the study of object manipulation in robotics and has been a topic of great interest. In this study, pig skin was taken as a surrogate model for human skin, and its adhesive, friction, and deformation behaviors were measured under various exposure times to air. Indentation, friction, and scratch tests were performed at $25^{\circ}C$ and 45% relative humidity. The influences of adhesion and deformation on the coefficient of friction were characterized; the pig skin was found to be sensitive to the sliding velocity and normal load under the controlled experimental conditions.

Friction and Wear Behavior of Coating and Surface Treated Steel for Low Velocity High Pressure Application (코팅 및 표면 처리된 강의 고하중 영역에서의 마모 마찰 특성)

  • Lim, Dong-Phill;Shim, Dong-Seob;Kim, Sang-Beom
    • Tribology and Lubricants
    • /
    • v.24 no.6
    • /
    • pp.386-392
    • /
    • 2008
  • Friction and wear behavior of hard coated and surface treated steel with candidate processing methods for low velocity high pressure application investigated. Wear tests were carried out under specific region considering the operation condition of construction equipments under lubricated and unlubricated condition. Different tribological behavior analyzed with comparing the wear rate of counter part, morphology and topography of worn surface and the worn volume of samples and counter parts.

정량적 엔진평가에 의한 엔진 윤활유 평가기술

  • 전상명
    • Tribology and Lubricants
    • /
    • v.13 no.2
    • /
    • pp.8-15
    • /
    • 1997
  • It is very difficult to express the state of a tested engine objectively concerning the malfunction, failure and wear of an engine. The general method of engine evaluation is to express evaluator's opinion for the engine state after testing. However, these methods is only subjective evaluation because test engineers, designers, and evaluators does not easily coincide in opinion. Therefore, in this article, the method of engine rating are introduced in order to represent the qualitative trends into quantitative value. The purpose of Engine Rating is to assign a quantified value to the tribology state of a tested engines. Originally, this Engine Rating method have been used to evaluate the performance of engine oil quantitavely. Using this method, we can predict the proper interval of engine oil change due to its objectivity. So, we can prevent the frequent change of engine oil and protect the environmental contamination. Furthermore, this method can be used to tell the general state of a tested engine after finishing engine durability tests. A single merit scale is used to evaluate numerically the state of cleanliness and the mechanical condition. Generally, a part which is absolutely clean or shows no wear, is rated merit 10. A part which is absolutely dirty or very worn, is rated merit 0.

A Study on Tribological Properties of 3D-Printed Surface with Respect to Sliding Orientation (3D 프린팅된 표면의 슬라이딩 방향에 따른 트라이볼로지적 특성 연구)

  • Sim, Jae Woong;Caro, Christian Nicholas De;Seo, Kuk-Jin;Kim, Dae-Eun
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.337-342
    • /
    • 2019
  • This paper presents an experimental investigation of friction and wear characteristic with respect to patterns occurring on the surface of 3D printed polymer products by fused deposition modeling method. The purpose of this study was to investigate the effect of the patterns and sliding directions on the tribological properties of 3D printed polymer surface. A cubic specimen was printed using polylactic acid filament as the printing material. Friction tests were conducted for different directions with respect to the patterns that were generated on the top and the side surfaces of the specimen, by using a ball-on-reciprocating type tribotester. SUJ2 bearing ball of which the diameter was 11 times greater than the width of the largest pattern was used as the counter surface to assess the frictional behavior. Friction tests were conducted on the top and the side surfaces with respect to the patterns in 3 (0°, 45°, 90°) different directions respectively. Coefficient of friction increased as cycles increased in all cases. The results of the tests showed that the lowest coefficient of friction was measured with the 45° sliding direction on the side surface. The wear rate was the lowest at 45° sliding direction on the side surface, while it was the highest at 0° sliding direction on the top surface. Coefficient of friction of about 0.45 was determined to be the converging value on the top compared to the side surface.

The Effect of Metal Fibers on the Tribology of Automotive Friction Materials (마찰재에 함유된 금속섬유와 마찰 특성의 연관관계)

  • Ko, Kil-Ju;Cho, Min-Hyung;Jang, Ho
    • Tribology and Lubricants
    • /
    • v.17 no.4
    • /
    • pp.267-275
    • /
    • 2001
  • Friction and wear properties of brake friction materials containing different metal fibers (Al, Cu or Steel fibers) were investigated. Based on a simple experimental formulation, friction materials with the same amount of metal fibers were tested using a pad-on-disk type friction tester. Two different materials (gray cast iron and aluminum metal matrix composite (MMC)) were used for disks rubbing against the friction materials. Results front ambient temperature tests revealed that the friction material containing Cu fibers sliding against gray cast iron disk showed a distinct negative $\mu$-v (friction coefficient vs. sliding velocity) relation implying possible stick-slip generation at low speeds. The negative $\mu$- v relation was not observed when the Cu-containing friction materials were rubbed against the Al-MMC counter surface. Elevated temperature tests showed that the friction level and the intensity of friction force oscillation were strongly affected by the thermal conductivity and melting temperature of metallic ingredients of the friction couple. Friction materials slid against cast iron disks exhibited higher friction coefficients than Al-MMC (metal matrix composite) disks during high temperature tests. On the other hand, high temperature test results suggested that copper fibers in the friction material improved fade resistance and that steel fibers were not compatible with Al-MMC disks showing severe material transfer and erratic friction behavior during sliding at elevated temperatures.