• Title/Summary/Keyword: triaxial

Search Result 954, Processing Time 0.025 seconds

$K_0$ Values and Shear Strengths under $K_0$ Consolidated Triaxial Test According to Matric Suction for an Unsaturated Soil (불포화토의 $K_0$ 압밀 삼축압축실험시 모관흡수력에 따른 정지토압계수 및 전단강도에 관한 연구)

  • Kim, Tae-Kyung;Oh, Se-Boong
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.89-98
    • /
    • 2008
  • In this study, the behaviour of an unsaturated soil was analyzed by performing $K_0$ consolidated triaxial tests. Unsaturated triaxial tests were performed with matric suctions for weathered soils and stress paths under consolidation and stress-strain relationships under shear were obtained. As a result, the $K_0$ value decreased as the matric suction increased. Besides, both isotropic and $K_0$ conditions had similar shear strength envelopes at the same matric suction. Especially, strength parameters could be obtained by stress variables used in the critical state theory more reasonably than by those of Mohr circles at failure.

The Estimation of Initial Elastic Modulus of Clay by Standard Consolidation Test (표준압밀시험에 의한 점토의 초기탄성계수 산정)

  • Kwon, Byenghae;Eam, Sunghoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.66 no.1
    • /
    • pp.15-24
    • /
    • 2024
  • Unlike artificially created homogeneous materials, the process of calculating the elastic modulus of natural soil involves the possibility of errors. Because the stress-strain behavior of soil is nonlinear, the secant modulus of elasticity is often used based on 1/2 of the stress at failure. Since soil has the property of changing its elastic modulus depending on the confining pressure, numerical analysis models that analyze its behavior inevitably include complex elements. The hyperbolic model, which relatively accurately simulates the behavior immediately after loading in soft ground, assumes that the stress-strain curve of the consolidated undrained triaxial test is hyperbolic and requires the slope of the tangent line at the starting point. However, the slope of the initial tangent in the stress-strain curve obtained from an actual triaxial test is difficult to have regularity according to changes in confining pressure. Additionally, due to the characteristics of a hyperbola, even small changes in related factors cause large changes in the hyperbola. Therefore, there is a lot of randomness in the process of calculating model parameters from the triaxial test results, which causes large differences in the results. Therefore, the method of calculating the initial elastic modulus by the consolidation test presented in this study is also used to verify the method by the triaxial test. It can be applied. However, since this study was applied to only one sample showing typical consolidation characteristics, it is necessary to check samples with various physical properties in the future.

A novel triaxial testing device for unsaturated soils with measurement of suction and volumetric strains

  • Qian-Feng Gao;Mohamad Jrad;Mahdia Hattab;Said Taibi;Jean M. Fleureau
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.109-122
    • /
    • 2024
  • Standard triaxial cells are commonly used to measure the mechanical behavior of saturated soils. However, this type of standard system is difficult to use for unsaturated soil specimens since it cannot measure the changes in the pore-air volume and pressure. This paper proposes to extend the measurement possibilities of the standard triaxial testing device in a simple way and to adapt it to partially saturated soils. The system is supplied by two hygrometers installed at each end of the cylindrical unsaturated specimen to measure local relative humidity, which allows the derivation of suction. The volumetric strain of the specimen is calculated by analyzing digital photos captured from the outside of the transparent cell wall. Specimens made of kaolin clay, having different hydraulic properties, were tested to verify the reliability of the measurements, and thus, the relevance of the proposed techniques to study the mechanical behavior of unsaturated soils.

Migration of fine granular materials into overlying layers using a modified large-scale triaxial system

  • Tan Manh Do;Jan Laue;Hans Mattsson;Qi Jia
    • Geomechanics and Engineering
    • /
    • v.37 no.4
    • /
    • pp.359-370
    • /
    • 2024
  • The primary goal of this study is to evaluate the migration of fine granular materials into overlying layers under cyclic loading using a modified large-scale triaxial system as a physical model test. Samples prepared for the modified large-scale triaxial system comprised a 60 mm thick gravel layer overlying a 120 mm thick subgrade layer, which could be either tailings or railway sand. A quantitative analysis of the migration of fine granular materials was based on the mass percentage and grain size of migrated materials collected in the gravel. In addition, the cyclic characteristics, i.e., accumulated axial strain and excess pore water pressure, were evaluated. As a result, the total migration rate of the railway sand sample was found to be small. However, the total migration rate of the sample containing tailings in the subgrade layer was much higher than that of the railway sand sample. In addition, the migration analysis revealed that finer tailings particles tended to be migrated into the upper gravel layer easier than coarser tailings particles under cyclic loading. This could be involved in significant increases in excess pore water pressure at the last cycles of the physical model test.

Analysis of behavioral characteristics of liquefaction of sand through repeated triaxial compression test and numerical analysis

  • Hyeok Seo;Daehyeon Kim
    • Geomechanics and Engineering
    • /
    • v.38 no.2
    • /
    • pp.165-177
    • /
    • 2024
  • Liquefaction phenomenon refers to a phenomenon in which excess pore water pressure occurs when a dynamic load such as an earthquake is rapidly applied to a loose sandy soil ground where the ground is saturated, and the ground loses effective stress and becomes liquid. The laboratory repetition test for liquefaction evaluation can be performed through a repeated triaxial compression test and a repeated shear test. In this regard, this study attempted to evaluate the effects of the relative density of sand on the liquefaction resistance strength according to particle size distribution using repeated triaxial compression tests, and additional experimental verification using numerical analysis was conducted to overcome the limitations of experimental equipment. As a result of the experiment, it was confirmed that the liquefaction resistance strength increased as the relative density increased regardless of the classification of soil, and the liquefaction resistance strength of the SP sample close to SW was quite high. As a result of numerical analysis, it was confirmed that the liquefaction resistance strength increased as the confining pressure increased under the same relative density, and the liquefaction resistance strength did not decrease below a certain limit even though the confining pressure was significantly reduced at a relatively low relative density. This is judged to be due to a change in confining pressure according to the depth of the ground. As a result of analyzing the liquefaction resistance strength according to the frequency range, it was confirmed that there was no significant difference from the laboratory experiment results in the basic range of 0.1 to 1.0 Hz.

Effects of triaxial magnetic field on the anisotropic nanoplates

  • Karami, Behrouz;Janghorban, Maziar;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.361-374
    • /
    • 2017
  • In this study, the influences of triaxial magnetic field on the wave propagation behavior of anisotropic nanoplates are studied. In order to include small scale effects, nonlocal strain gradient theory has been implemented. To study the nanoplate as a continuum model, the three-dimensional elasticity theory is adopted in Cartesian coordinate. In our study, all the elastic constants are considered and assumed to be the functions of (x, y, z), so all kind of anisotropic structures such as hexagonal and trigonal materials can be modeled, too. Moreover, all types of functionally graded structures can be investigated. eigenvalue method is employed and analytical solutions for the wave propagation are obtained. To justify our methodology, our results for the wave propagation of isotropic nanoplates are compared with the results available in the literature and great agreement is achieved. Five different types of anisotropic structures are investigated in present paper and then the influences of wave number, material properties, nonlocal and gradient parameter and uniaxial, biaxial and triaxial magnetic field on the wave propagation analysis of anisotropic nanoplates are presented. From the best knowledge of authors, it is the first time that three-dimensional elasticity theory and nonlocal strain gradient theory are used together with no approximation to derive the governing equations. Moreover, up to now, the effects of triaxial magnetic field have not been studied with considering size effects in nanoplates. According to the lack of any common approximations in the displacement field or in elastic constant, present theory has the potential to be used as a bench mark for future works.

Transverse Low Velocity Impact Failure Behavior of Triaxial Braided Composite Tube with Different Braiding Angles (Triaxial braiding 기술을 이용한 원형 튜브의 횡방향 저속충격파괴 거동분석)

  • Sim, Ji-hyun;Park, Sung-min;Kim, Ji-hye;Shin, Dong-woo;Chon, Jin-sung;Kim, Jae-kwan;Bae, Jin-Seok
    • Textile Coloration and Finishing
    • /
    • v.28 no.4
    • /
    • pp.246-252
    • /
    • 2016
  • In comparison to metal alloys, braided composite features a high impact resistance and crash energy absorption potential, and also it still remained competitive stiffness and strength properties. Braiding angle is one of the most important parameters which affect the mechanical behaviors of braided composite. This paper presents transverse low velocity impact failure behavior analysis on the carbon 3D triaxial braided composite tube with the braiding angle of $20^{\circ}$, $50^{\circ}$ and $80^{\circ}$. The flexural behaviour of 3D triaxial braided composite tube under bending loads was studied by conducting quasistatic three point bending test. Also, the low velocity impact responses of the braided composite tubes were also tested to obtain load-displacement curves and energy absorption. Consequently, the increase of the braided angle, the peak load also increases owing to the bigger bending stiffness.

Shielding Effect Analysis of Communication Cables Using EN50289 for Transfer Impedance Measurement of Coaxial Cable (EN50289 동축케이블 전달 임피던스 측정 방법을 이용한 통신 케이블의 차폐 효과 분석)

  • Lee, Keunbong;Zhang, Nan;Jeon, Jiwoon;Song, Seungje;Nah, Wansoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.11
    • /
    • pp.1156-1163
    • /
    • 2014
  • In this work by measuring transfer impedance of communication cables using EN50289 its Shielding effect is analyzed. transfer impedance measurement triaxial method using EN50289 is defined in CENELEC, it is unlike triaxial method prescribed in IEC Standard 96-1, can be measured regardless of diameter of coaxial cable and outer conductor. in this paper, transfer impedance measurement device of coaxial cable is designed and made according to EN50289 standard, The analysis determines the reliable working frequency range of coaxial cable and examined the impact of different shielding methods on coaxial cable. The transfer impedance measurements show considerable variations in results with various shielding methods. also the measurement procedure is verified through comparison of calculated and measured transfer impedance of RG-58 cable.

Unsaturated Effective Stress Based on Water Retention Characteristics for Triaxial Tests of Silty Sand (실트질 사질토의 삼축시험 시 함수특성에 따른 불포화 유효응력)

  • Lee, Younghuy;Oh, Seboong;Baek, Seungcheol;Kim, Sangmin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.1
    • /
    • pp.69-75
    • /
    • 2013
  • Suction stress is evaluated from soil water retention curves in order to deduce effective stress in unsaturated soils. $K_0$ consolidated triaxial tests were performed for silty sand to interpret effective stress in consolidation and shearing of unsaturated soils. Suction stresses from both consolidation stress and shear strength in triaxial tests were compared with those from soil water retention curves. The effective stresses on consolidation and shear strength are on each unique line, which are the same as that of the saturated case. It was found that the effective stress from soil water retention curves agrees with those from consolidation and shear strength in triaxial tests.

Comparative Study on the Evaluation of Liquefaction Resistance Ratio According to the Application of the Korean Standard for Cyclic Triaxial Strength Test (반복삼축강도시험의 KS 표준 제정에 따른 액상화 저항강도 평가 비교 연구)

  • Lee, Seokhyung;Han, Jin-Tae;Park, Ka-hyun;Kim, Jongkwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.9
    • /
    • pp.35-44
    • /
    • 2022
  • The cyclic triaxial strength test is commonly applied as a laboratory test for evaluating the liquefaction resistance ratio. However, the test procedure was not standardized in South Korea until recently; thus, the test results could significantly differ depending on the performer and apparatus, even when identical soil is used. In this study, the American and Japanese standards for the cyclic triaxial strength test were analyzed and the Korean standard was developed considering domestic circumstances. To verify the effectiveness of the standardization of liquefaction laboratory tests, several cases of cyclic triaxial strength tests were conducted and analyzed (1) following the Korean standard and (2) without following any specific instructions for the test procedure. Under (1), the deviation of the liquefaction resistance ratio dramatically decreased.