• Title/Summary/Keyword: triangular

Search Result 2,101, Processing Time 0.049 seconds

Effects of types of bridge decks on competitive relationships between aerostatic and flutter stability for a super long cable-stayed bridge

  • Hu, Chuanxin;Zhou, Zhiyong;Jiang, Baosong
    • Wind and Structures
    • /
    • v.28 no.4
    • /
    • pp.255-270
    • /
    • 2019
  • Aerodynamic configurations of bridge decks have significant effects on the aerostatic torsional divergence and flutter forsuper long-span bridges, which are onset for selection of suitable bridge decksfor those bridges. Based on a cable-stayed bridge with double main spans of 1500 m, considering typical twin-box, stiffening truss and closed-box section, which are the most commonly used form of bridge decks and assumed that the rigidity of those section is completely equivalent, are utilized to investigate the effects of aerodynamic configurations of bridge decks on aerodynamic instability performance comprised of the aerostatic torsional divergence and flutter, by means of wind tunnel tests and numerical calculations, including three-dimensional (3D) multimode flutter analysis and nonlinear aerostatic analysis. Regarding the aerostatic torsional divergence, the results obtained in this study show twin-box section is the best, closed-box section the second-best, and the stiffening truss section the worst. Regarding the flutter, the flutter stability of the twin-box section is far better than that of the stiffening truss and closed-box section. Furthermore, wind-resistance design depends on the torsional divergence for the twin-box and stiffening truss section. However, there are obvious competitive relationships between the aerostatic torsional divergence and flutter for the closed-box section. Flutter occur before aerostatic instability at initial attack angle of $+3^{\circ}$ and $0^{\circ}$, while the aerostatic torsional divergence occur before flutter at initial attack angle of $-3^{\circ}$. The twin-box section is the best in terms of both aerostatic and flutter stability among those bridge decks. Then mechanisms of aerostatic torsional divergence are revealed by tracking the cable forces synchronous with deformation of the bridge decksin the instability process. It was also found that the onset wind velocities of these bridge decks are very similar at attack angle of $-3^{\circ}$. This indicatesthat a stable triangular structure made up of the cable planes, the tower, and the bridge deck greatly improves the aerostatic stability of the structure, while the aerodynamic effects associated with the aerodynamic configurations of the bridge decks have little effects on the aerostatic stability at initial attack angle of $-3^{\circ}$. In addition, instability patterns of the bridge depend on both the initial attack angles and aerodynamic configurations of the bridge decks. This study is helpful in determining bridge decksfor super long-span bridges in future.

Numerical Reproducibility of Wave Response for an Oscillating Wave Surge Converter Using Inverted Triangle Flap (역삼각형 플랩을 이용한 진자형 파력발전장치의 파랑응답에 대한 수치적 재현 가능성)

  • Kim, Tag-Gyeom;Kim, Do-Sam;Cho, Yong-Hwan;Lee, Kwang-Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.33 no.5
    • /
    • pp.203-216
    • /
    • 2021
  • Analyzing various wave interactions with oscillating wave surge converters (OWSC) is essential because they must be operated efficiently under a wide range of wave conditions and designed to extract optimal wave energy. In the conceptual design and development stage of OWSC, numerical analysis can be a good alternative as a design tool. This study performed a numerical analysis on the behavioral characteristics of the inverted triangle flap against the incident waves using open source CFD to examine the essential behavioral attributes of OWSC. Specifically, the behavioral characteristics of the structure were studied by calculating the free water surface displacement and the flap rotation angle near the inverted triangular flap according to the change of the period under the regular wave conditions. By comparing and examining the numerical analysis results with the hydraulic model experiments, the validity of the analysis performed and the applicability in analyzing the wave-structure interactions related to OWSC was verified. The numerical analysis result confirmed that the hydrodynamic behavior characteristic due to the interactions of the wave and the inverted triangle flap was well reproduced.

Recognition and preference of rice-based home meal replacement for breakfast among adolescents in the Jeonbuk area (전북지역 일부 청소년의 아침식사대용 쌀 기반 가정간편식 인식 및 선호도)

  • Oh, Hae-Rim;Kim, Hyunsuk;Jung, Su-Jin;Cha, Youn-Soo
    • Journal of Nutrition and Health
    • /
    • v.54 no.3
    • /
    • pp.262-276
    • /
    • 2021
  • Purpose: Although, the rate of skipping breakfast among adolescents has increased in recent years, there has been an increase in the consumption of home meal replacement (HMR). This study examines the recognition and preference of rice-based Korean style HMR for breakfast among adolescents in located at Jeollabuk-do. Methods: Total of 550 middle- and high-school students of Jeollabuk-do enrolled in this study signing a consent of participation. After conducting a preliminary survey, the questionnaire employed was modified according to the purpose of this study, and the self-recording method was appliedto fill out the questionnaire. Data were analyzed using IBM SPSS Statistics 25. The 𝛘2-test was performed for categorical variables, whereas continuous variables were analyzed by the independent t-test. Results: Results of this study determined that 272 students (54.6%) belonged tobreakfasteating group and 226 (45.4%) were in the breakfast-skipping group. The reasons specified by both groups for eating HMR were 'convenient to cook', 'delicious', and 'time-saving'. The a result of analyzing perception of the importance of HMR by classifying as whether to eat or not to eat breakfast, revealed that compared to the breakfast-skipping group, the breakfast-eating group considered 'hygiene and cleanliness' as important factors (p < 0.001). Considering the gender, school, and breakfast consumption, the most preferred Korean HMR were 'triangular gimbap', 'gimbap', and 'rice balls'. Conclusion: Results of this study indicate, when considering adolescents, there is a necessary for continuous researches to develop convenient breakfast substitutes that are easily consumed. Moreover, we believe that it is essential to impart proper cooking education and recipe distribution of the menu.

Crystal Structures of Fully Dehydrated Zeolite $Cd_6-A$ and of $Rb_{13.5}-A$, the Product of its Reaction with Rubidium, Containing Cationic Clusters

  • Jang, Se-Bok;Kim, Yang;Seff, Karl
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.3
    • /
    • pp.236-241
    • /
    • 1994
  • The crystal structures of $Cd_6-A$ evacuated at $2{\times}10^{-6}$ Torr and 750$^{\circ}$C (a=12.216(l) ${\AA}$), and of the product of its reaction with Rb vapor (a= 12.187(l) ${\AA}$), have been determined by single-crystal x-ray diffraction techniques in the cubic space group Pm$\bar{3}$m at 21(l)$^{\circ}$C. Their structures were refined to the final error indices, $R_1$=0.055 and $R_2$=0.067 with 191 reflections, and $R_1$=0.066 and $R_2$=0.049 with 90 reflections, respectively, for which I>3${\sigma}$(I). In dehydrated $Cd_6-A$, six $Cd^{2+}$ ions are found at two different threefold-axis sites near six-oxygen ring centers. Four $Cd^{2+}$ ions are recessed 0.50 ${\AA}$ into the sodalite cavity from the (111) plane at O(3), and the other two extend 0.28 ${\AA}$ into the large cavity from this plane. Treatment at 250 $^{\circ}$C with 0.1 Torr of Rb vapor reduces all $Cd^{2+}$ ions to give $Rb_{13.5^-}$A. Rb species are found at three crystallographic sites: three $Rb^+$ ions lie at eight-oxygen-ring centers, filling that position, and ca. 10.5 $Rb^+$ ions lie on threefold axes, 8.0 in the large cavity and 2.5 in the sodalite cavity. In this structure, ca. 1.5 Rb species more than the 12 $Rb^+$ ions needed to balance the anionic charge of zeolite framework are found, indicating that sorption of $Rb^0$ has occurred. The occupancies observed can be most simply explained by two "unit cell" compositions, $Rb_{12^-}A{\cdot}Rb$ and $Rb_{12^-}A{\cdot}2Rb$, of approximately equal population. In sodalite cavities, $Rb_{12^-}A{\cdot}Rb$ would have a $(Rb_2)^+$ cluster and $Rb_{12^-}A{\cdot}2Rb$ would have a triangular $(Rb_3)^+$ cluster. Each of the atoms of these clusters must bind further through a six-oxygen ring to a large cavity $Rb^+$ to give $(Rb_4)^{3+}$ (linear) and $(Rb_6)^{4+}$ (trigonal). Other unit-cell compositions and other cationic cluster compositions such as $(Rb_8)^{n+}$ may exist.

Risk Analysis for the Rotorcraft Landing System Using Comparative Models Based on Fuzzy (퍼지 기반 다양한 모델을 이용한 회전익 항공기 착륙장치의 위험 우선순위 평가)

  • Na, Seong Hyeon;Lee, Gwang Eun;Koo, Jeong Mo
    • Journal of the Korean Society of Safety
    • /
    • v.36 no.2
    • /
    • pp.49-57
    • /
    • 2021
  • In the case of military supplies, any potential failure and causes of failures must be considered. This study is aimed at examining the failure modes of a rotorcraft landing system to identify the priority items. Failure mode and effects analysis (FMEA) is applied to the rotorcraft landing system. In general, the FMEA is used to evaluate the reliability in engineering fields. Three elements, specifically, the severity, occurrence, and detectability are used to evaluate the failure modes. The risk priority number (RPN) can be obtained by multiplying the scores or the risk levels pertaining to severity, occurrence, and detectability. In this study, different weights of the three elements are considered for the RPN assessment to implement the FMEA. Furthermore, the FMEA is implemented using a fuzzy rule base, similarity aggregation model (SAM), and grey theory model (GTM) to perform a comparative analysis. The same input data are used for all models to enable a fair comparison. The FMEA is applied to military supplies by considering methodological issues. In general, the fuzzy theory is based on a hypothesis regarding the likelihood of the conversion of the crisp value to the fuzzy input. Fuzzy FMEA is the basic method to obtain the fuzzy RPN. The three elements of the FMEA are used as five linguistic terms. The membership functions as triangular fuzzy sets are the simplest models defined by the three elements. In addition, a fuzzy set is described using a membership function mapping the elements to the intervals 0 and 1. The fuzzy rule base is designed to identify the failure modes according to the expert knowledge. The IF-THEN criterion of the fuzzy rule base is formulated to convert a fuzzy input into a fuzzy output. The total number of rules is 125 in the fuzzy rule base. The SAM expresses the judgment corresponding to the individual experiences of the experts performing FMEA as weights. Implementing the SAM is of significance when operating fuzzy sets regarding the expert opinion and can confirm the concurrence of expert opinion. The GTM can perform defuzzification to obtain a crisp value from a fuzzy membership function and determine the priorities by considering the degree of relation and the form of a matrix and weights for the severity, occurrence, and detectability. The proposed models prioritize the failure modes of the rotorcraft landing system. The conventional FMEA and fuzzy rule base can set the same priorities. SAM and GTM can set different priorities with objectivity through weight setting.

Evaluation of Distortion in Measuring the Stability of Distal Radio-ulnar Joint in Wrist PA-Grip View (Wrist PA-grip view에서 먼쪽노자관절의 안정성 정도 측정 시 왜곡도 평가)

  • Shim, Jina;Lee, Youngjin
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.3
    • /
    • pp.321-327
    • /
    • 2021
  • Wrist PA-grip view is used to diagnose triangular fibrocartilage complex (TFCC) tear because it can easily diagnose damage to the surrounding wrist ligaments. However, despite advances in radiology equipment, distortion of images due to geometric elements still has many limitations. In this paper, we propose a method that can minimize the distortions of images by analyzing the distortions occurring in the wrist PA-grip view. A source of image distance (SID) were set at 130 cm and 150 cm for comparison with 110 cm. Depending on the SID, the phantom of wrist was moved at 0, 2, 4, 6, 8, and 10 cm in the X-axis and Y-axis directions, respectively. For quantitative evaluation, the difference of distance between the radius and ulna was measured in picture archiving and communication system (PACS) system. As a qualitative evaluation, survey was conducted among 20 radiologic technologists who examined the Wrist PA-grip view. The Kruskal Wallis test was performed to compare the distortion according to the phantom movement in the X-axis and Y-axis directions based on the SID, and the Tukey test was performed as a post-test. In the quantitative evaluation results, the measured values obtained in the X-axis was not significantly different in all groups (p>0.05). The measured values obtained in the Y-axis was significantly different in the most groups (p<0.05). Therefore, to reduce distortion while maintaining image quality, we recommend what examine the SID at 150 cm than 110 cm.

Analysis of Plate Motion Parameters in Southeastern South Korea using GNSS (GNSS를 활용한 한반도 동남권 지역의 지각 변동 파라미터 분석)

  • Lee, Seung Jun;Yun, Hong Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.6
    • /
    • pp.697-705
    • /
    • 2020
  • This paper deals with an analysis of crustal movement for the sourthern part of Korean peninsula using GNSS (Global Navigation Satellite System) data. An earthquake of more than 5.0 occurred in the southeastern region of the Korean Peninsula, and it is necessary to evaluate the risk of earthquakes in various ways.In order to reveal long-term tectonic movement patten in Pohang and Gyeongju provinces, we derived crustal movement parameters related with elastic theory. We used GAMIT/GLOBK for analyzing seven-year interval GNSS data of CORS (Continuously Operating Reference Stations). The azimuth of velocity vectors trended generally about 110° with an mean magnitude of 31mm/yr.The main characteristics of the strain change for seven-year in Korea obtaind from our study. Direction of the principal axis of the maximum compression is ENE-WSW as a whole, through there are some exceptions. The mean rate of the maximum shear strain change is (0.11±0.07)μ/yr, that is approximately one third that of Chubu district, Central Japan. Taking into account our results, the mean rate of maximum shear in southern part of Korean peninsula is considered as reasonable. The mean azimuth of principal strain is about (85.4°±26.8°). There are some exceptions of azimuth because the average azimuth differ from the left and right side in Yangsan fault which are about (73.2°±21.5°) and (105.2°±17.0°) respectively, It is noteworthy that the high seismicity areas in the southern part of Korea peninsula almost coincides with the area of large strain rate. As a conclusion, it could be stated that the our study represents the characteristics of crustal deformation in the southern part of peninsula, and contributes to the researches on earthquake disaster management.

3-channel Tiled-aperture Coherent-beam-combining System Based on Target-in-the-loop Monitoring and SPGD Algorithm (목표물 신호 모니터링 및 SPGD 알고리즘 기반 3 채널 타일형 결맞음 빔결합 시스템 연구)

  • Kim, Youngchan;Yun, Youngsun;Kim, Hansol;Chang, Hanbyul;Park, Jaedeok;Choe, Yunjin;Na, Jeongkyun;Yi, Joohan;Kang, Hyungu;Yeo, Minsu;Choi, Kyuhong;Noh, Young-Chul;Jeong, Yoonchan;Lee, Hyuk-Jae;Yu, Bong-Ahn;Yeom, Dong-Il;Jun, Changsu
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • We have studied a tiled-aperture coherent-beam-combining system based on constructive interference, as a way to overcome the power limitation of a single laser. A 1-watt-level, 3-channel coherent fiber laser and a 3-channel fiber array of triangular tiling with tip-tilt function were developed. A monitoring system, phase controller, and 3-channel phase modulator formed a closed-loop control system, and the SPGD algorithm was applied. Eventually, phase-locking with a rate of 5-67 kHz and peak-intensity efficiency comparable to the ideal case of 53.3% was successfully realized. We were able to develop the essential elements for a tiled-aperture coherent-beam-combining system that had the potential for highest output power without any beam-combining components, and a multichannel coherent-beam-combining system with higher output power and high speed is anticipated in the future.

Assessment of the Structural Collapse Behavior of Between Offshore Supply Vessel and Leg in the Jack-up Drilling Rig (잭업드릴링 리그의 레그와 작업 지원선 충돌에 의한 구조붕괴 거동 평가)

  • Park, Joo-Shin;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.4
    • /
    • pp.601-609
    • /
    • 2022
  • Jack-up drilling rigs are mobile offshore platforms widely used in the offshore oil and gas exploration industry. These are independent, three-legged, self-elevating units with a cantilevered drilling facility for drilling and production. A typical jack-up rig includes a triangular hull, a tower derrick, a cantilever, a jackcase, living quarters and legs which comprise three-chord, open-truss, X-braced structure with a spudcan. Generally, jack-up rigs can only operate in water depths ranging from 130m to 170m. Recently, there has been an increasing demand for jack-up rigs for operating at deeper water levels and harsher environmental conditions such as waves, currents and wind loads. All static and dynamic loads are supported through legs in the jack-up mode. The most important issue by society is to secure the safety of the leg structure against collision that causes large instantaneous impact energy. In this study, nonlinear FE -analysis and verification of the requirement against collision for 35MJ recommended by DNV was performed using LS-Dyna software. The colliding ship used a 7,500ton of shore supply vessel, and five scenarios of collisions were selected. From the results, all conditions do not satisfy the class requirement of 35MJ. The loading conditions associated with chord collision are reasonable collision energy of 15M and brace collisions are 6MJ. Therefore, it can be confirmed that the identical collision criteria by DNV need to be modified based on collision scenarios and colliding members.

An Exact Division Algorithm for Change-Making Problem (거스름돈 만들기 문제의 정확한 나눗셈 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.185-191
    • /
    • 2022
  • This paper proposed a division algorithm of performance complexity $O{\frac{n(n+1)}{2}}$ for a change-making problem(CMP) in which polynomial time algorithms are not known as NP-hard problem. CMP seeks to minimize the sum of the xj number of coins exchanged when a given amount of money C is exchanged for cj,j=1,2,⋯,n coins. Known polynomial algorithms for CMPs are greedy algorithms(GA), divide-and-conquer (DC), and dynamic programming(DP). The optimal solution can be obtained by DP of O(nC), and in general, when given C>2n, the performance complexity tends to increase exponentially, so it cannot be called a polynomial algorithm. This paper proposes a simple algorithm that calculates quotient by dividing upper triangular matrices and main diagonal for k×n matrices in which only j columns are placed in descending order of cj of n for cj ≤ C and i rows are placed k excluding all the dividers in cj. The application of the proposed algorithm to 39 benchmarking experimental data of various types showed that the optimal solution could be obtained quickly and accurately with only a calculator.