DOI QR코드

DOI QR Code

3-channel Tiled-aperture Coherent-beam-combining System Based on Target-in-the-loop Monitoring and SPGD Algorithm

목표물 신호 모니터링 및 SPGD 알고리즘 기반 3 채널 타일형 결맞음 빔결합 시스템 연구

  • Kim, Youngchan (Advanced Photonics Research Institute, GIST) ;
  • Yun, Youngsun (Advanced Photonics Research Institute, GIST) ;
  • Kim, Hansol (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Chang, Hanbyul (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Park, Jaedeok (Department of Energy Systems Research, Ajou University) ;
  • Choe, Yunjin (Department of Energy Systems Research, Ajou University) ;
  • Na, Jeongkyun (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Yi, Joohan (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Kang, Hyungu (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Yeo, Minsu (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Choi, Kyuhong (Advanced Photonics Research Institute, GIST) ;
  • Noh, Young-Chul (Advanced Photonics Research Institute, GIST) ;
  • Jeong, Yoonchan (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Lee, Hyuk-Jae (Department of Electrical and Computer Engineering, Seoul National University) ;
  • Yu, Bong-Ahn (Advanced Photonics Research Institute, GIST) ;
  • Yeom, Dong-Il (Department of Energy Systems Research, Ajou University) ;
  • Jun, Changsu (Advanced Photonics Research Institute, GIST)
  • 김영찬 (광주과학기술원, 고등광기술연구소) ;
  • 윤영선 (광주과학기술원, 고등광기술연구소) ;
  • 김한솔 (서울대학교, 전기정보공학부) ;
  • 장한별 (서울대학교, 전기정보공학부) ;
  • 박재덕 (아주대학교 에너지시스템학과) ;
  • 최윤진 (아주대학교 에너지시스템학과) ;
  • 나정균 (서울대학교, 전기정보공학부) ;
  • 이주한 (서울대학교, 전기정보공학부) ;
  • 강현구 (서울대학교, 전기정보공학부) ;
  • 여민수 (서울대학교, 전기정보공학부) ;
  • 최규홍 (광주과학기술원, 고등광기술연구소) ;
  • 노영철 (광주과학기술원, 고등광기술연구소) ;
  • 정윤찬 (서울대학교, 전기정보공학부) ;
  • 이혁재 (서울대학교, 전기정보공학부) ;
  • 유봉안 (광주과학기술원, 고등광기술연구소) ;
  • 염동일 (아주대학교 에너지시스템학과) ;
  • 전창수 (광주과학기술원, 고등광기술연구소)
  • Received : 2020.11.24
  • Accepted : 2020.12.08
  • Published : 2021.02.25

Abstract

We have studied a tiled-aperture coherent-beam-combining system based on constructive interference, as a way to overcome the power limitation of a single laser. A 1-watt-level, 3-channel coherent fiber laser and a 3-channel fiber array of triangular tiling with tip-tilt function were developed. A monitoring system, phase controller, and 3-channel phase modulator formed a closed-loop control system, and the SPGD algorithm was applied. Eventually, phase-locking with a rate of 5-67 kHz and peak-intensity efficiency comparable to the ideal case of 53.3% was successfully realized. We were able to develop the essential elements for a tiled-aperture coherent-beam-combining system that had the potential for highest output power without any beam-combining components, and a multichannel coherent-beam-combining system with higher output power and high speed is anticipated in the future.

단일 레이저의 출력 한계를 뛰어넘기 위한 빔결합 방법으로서, 보강간섭 원리를 이용한 타일형 결맞음 빔결합 시스템에 대해 연구하였다. 와트급 출력의 3 채널 결맞음 광섬유 레이저 및 삼각형 배치의 팁-틸트(tip-tilt) 기능을 갖춘 3 채널 출력단을 자체제작 하였다. 모니터링 시스템, 위상제어기, 3 채널 위상변조기 간의 궤환 제어 시스템(closed-loop system)을 구성하고 SPGD 알고리즘을 적용하여, 위상잠금 속도 5~67 kHz, 이상적인 계산값 대비 중심부 광세기 효율 53.3%의 성공적인 3 채널 위상잠금을 구현하였다. 빔결합 소자가 필요 없고, 가장 고출력 가능성을 가진 타일형 결맞음 빔결합을 위한 요소기술 개발이 완료되어, 향후 다채널, 고출력, 고속 제어 연구로 이어질 수 있을 것으로 기대된다.

Keywords

Acknowledgement

이 논문은 국방과학연구소(UD180040ID)의 지원으로 수행되었습니다.

References

  1. R. A. Motes, Introduction to High Power Fiber Lasers (Directed Energy Professional Society, NM, USA, 2009).
  2. S. J. Augst, S. M. Redmond, C. X. Yu, D. J. Ripin, T. Y. Fan, G. D. Goodno, P. A. Thielen, J. E. Rothenberg, and A. Sanchez-Rubio, "Coherent and spectral beam combining of fiber lasers," Proc. SPIE 8237, 823704 (2012).
  3. Z. Liu, X. Jin, R. Su, P. Ma, and P. Zhou, "Development status of high power fiber lasers and their coherent beam combination," Sci. China Inf. Sci. 62, 41301 (2019). https://doi.org/10.1007/s11432-018-9742-0
  4. H. Jeong, K. H. Lee, J. Lee, D.-J. Kim, J. H. Lee, and M. Jo, "High-beam-quality 2-kW-class spectrally combined laser using narrow-linewidth ytterbium-doped polarization-maintaining fiber amplifiers," Korean J. Opt. Photon. 31, 218-222 (2020). https://doi.org/10.3807/KJOP.2020.31.5.218
  5. D. C. Jones, A. J. Turner, A. M. Scott, S. M. Stone, R. G. Clark, C. Stace, and C. D. Stacey, "A multi-channel phase locked fibre bundle laser," Proc. SPIE 7580,75801V (2010).
  6. T. Weyrauch, M. Vorontsov, J. Mangano, V. Ovchinnikov, D. Bricker, E. Polnau, and A. Rostov, "Deep turbulence effects mitigation with coherent combining of 21 laser beams over 7km," Opt. Lett. 41, 840-843 (2016). https://doi.org/10.1364/OL.41.000840
  7. M. A. Vorontsov and T. Weyrauch, "High-power lasers for directed-energy applications: comment," Appl. Opt. 55, 9950-9953 (2016). https://doi.org/10.1364/AO.55.009950
  8. H. Chang, Q. Chang, J. Xi, T. Hou, R. Su, P. Ma, J. Wu, C. Li, M. Jiang, Y. Ma, and P. Zhou, "First experimental demonstration of coherent beam combining of more than 100 fiber lasers," Photon. Res. 8, 1943-1948 (2020). https://doi.org/10.1364/PRJ.409788
  9. E. Shekel, Y. Vidne, and B. Urbach, "16 kW single mode CW laser with dynamic beam for material processing," Proc. SPIE 11260, 1126021 (2020).
  10. L. A. Beresnev, R. A. Motes, K. J. Townes, P. Marple, K. Gurton, A. R. Valenzuela, C. Williamson, J. J. Liu, and C. Washer, "Design of a noncooled fiber collimator for compact, highefficiency fiber laser arrays," Appl. Opt. 56, B169-B178 (2017). https://doi.org/10.1364/AO.56.00B169
  11. L. Beresnev, A. Flores, R. Holten, A. Valenzuela, A. Taliaferro, A. Schweinsberg, K. Gurton, D. Ligon, C. Williamson, and S. Bilyk, "Multi-kW, uncooled densely packed fiber array for laser beam combining," in Proc. 2019 IEEE Research and Applications of Photonics in Defense Conference-RAPID (Miramar Beach, FL, USA, August. 2019), pp. 1-4.
  12. Y. An, J. Li, L. Huang, L. Li, J. Leng, L. Yang, and P. Zhou, "Numerical mode decomposition for multimode fiber: from multi-variable optimization to deep learning," Opt. Fiber Technol. 52, 101960 (2019). https://doi.org/10.1016/j.yofte.2019.101960
  13. K. Choi and C. Jun, "High-precision modal decomposition of laser beams based on globally optimized SPGD algorithm," IEEE Photon. J. 11, 7103110 (2019).
  14. R. Su, Y. Liu, B. Yang, P. Ma, X. Wang, P. Zhou, and X. Xu "Active polarization control of a 1.43 kW narrow linewidth fiber amplifier based on SPGD algorithm," J. Opt. 19, 045802 (2017). https://doi.org/10.1088/2040-8986/19/4/045802
  15. M. A. Vorontsov, T. Weyrauch, L. A. Beresnev, G. W. Carhart, L. Liu, and K. Aschenbach, "Adaptive array of phase-locked fiber collimators: analysis and experimental demonstration," IEEE J. Sel. Top. Quantum Electron. 15, 269-280 (2009). https://doi.org/10.1109/JSTQE.2008.2010875
  16. D. Zhi, P. Ma, Y. Ma, X. Wang, P. Zhou, and L. Si, "Novel adaptive fiber-optics collimator for coherent beam combination," Opt. Express 22, 31520-31528 (2014). https://doi.org/10.1364/OE.22.031520
  17. D. Zhi, Y. Ma, R. Tao, P. Zhou, X. Wang, Z. Chen, and L. Si, "Highly efficient coherent conformal projection system based on adaptive fiber optics collimator array," Sci. Rep. 9, 2783 (2019). https://doi.org/10.1038/s41598-019-39304-0
  18. A. Flores, C. Robin, A. Lanari, and I. Dajani, "Pseudo-random binary sequence phase modulation for narrow linewidth, kilowatt, monolithic fiber amplifiers," Opt. Express 22, 17735-17744 (2014). https://doi.org/10.1364/OE.22.017735
  19. C. Jun, M. Jung, W. Shin, B.-A. Yu, Y. S. Yoon, Y. Park, and K. Choi, "818 W Yb-doped amplifier with <7 GHz linewidth based on pseudo-random phase modulation in polarizationmaintained all-fiber configuration," Laser Phys. Lett. 16, 015102 (2019). https://doi.org/10.1088/1612-202x/aaee11
  20. C. Zeringue, I. Dajani, S. Naderi, G. T. Moore, and C. Robin, "A theoretical study of transient stimulated Brillouin scattering in optical fibers seeded with phase-modulated light," Opt. Express 20, 21196-21213 (2012). https://doi.org/10.1364/OE.20.021196
  21. V. R. Supradeepa, "Stimulated Brillouin scattering thresholds in optical fibers for lasers linewidth broadened with noise," Opt. Express 21, 4677-4687 (2013). https://doi.org/10.1364/OE.21.004677