• Title/Summary/Keyword: trench depth

Search Result 94, Processing Time 0.024 seconds

The Fabrication of an Applicative Device for Trench Width and Depth Using Inductively Coupled Plasma and the Bulk Silicon Etching Process

  • Woo, Jong-Chang;Choi, Chang-Auck;Kim, Chang-Il
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.1
    • /
    • pp.49-54
    • /
    • 2014
  • In this study, we carried out an investigation of the etch characteristics of silicon (Si) film, and the selectivity of Si to $SiO_2$ in $SF_6/O_2$ plasma. The etch rate of the Si film was decreased on adding $O_2$ gas, and the selectivity of Si to $SiO_2$ was increased, on adding $O_2$ gas to the $SF_6$ plasma. The optical condition of the Si film with this work was 1,350 nm/min, at a gas mixing ratio of $SF_6/O_2$ (=130:30 sccm). At the same time, the etch rate was measured as functions of the various etching parameters. The X-ray photoelectron spectroscopy analysis showed the efficient destruction of oxide bonds by ion bombardment, as well as the accumulation of high volatile reaction products on the etched surface. Field emission auger electron spectroscopy analysis was used to examine the efficiency of the ion-stimulated desorption of the reaction products.

Two-Step Etching Characteristics of Single-Si by the Plasma Etching Techique (플라즈마 식각방법에 의한 단결정 실리콘의 Two-Step 식각특성)

  • Lee, Jin Hee;Park, Sung Ho;Kim, Mal Moon;Park, Sin Chong
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.24 no.1
    • /
    • pp.91-96
    • /
    • 1987
  • Plasma etching can obtain less damaged etch surface than reactive ion etching. This study was performed to get anisotropic etching characteristics of Si using two step etching technique with C2CIF5 and SF6 gas mixture. The results show that the etch rate and aspect ratio of silicon was increased with increment of SF6 contents. The bulging phenomenon on trench side wall in the plasma one-step etching technique was eliminated by the two step etching technique. The anisotropy was decreased from 12(at 120m Torr) to 2.2(at 400m Torr) with increasing the chamber pressure. At the low rf power (350 watts) anisotrpy of silicon was obtained 7 lower than that of high rf power (650 watts. A:~9). In Summary we obtained anisotropic etching profiles of silicon with e 6\ulcornerm depth by using the plasma two-step etching technique.

  • PDF

Comparison of nutrient removal efficiency of an infiltration planter and an infiltration trench (침투도랑(IT)과 침투화분(IP)의 영양염류 저감효율 비교분석)

  • Yano, K.A.V.;Geronimo, F.K.F.;Reyes, N.J.D.G.;Jeon, Minsu;Kim, Leehyung
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.384-391
    • /
    • 2019
  • Nutrients in stormwater runoff have raised concerns regarding water quality degradation in the recent years. Low impact development (LID) technologies are types of nature-based solutions developed to address water quality problems and restore the predevelopment hydrology of a catchment area. Two LID facilities, infiltration trench (IT) and infiltration planter (IP), are known for their high removal rate of nutrients through sedimentation and vegetation. Long-term monitoring was conducted to assess the performance and cite the advantages and disadvantages of utilizing the facilities in nutrient removal. Since a strong ionic bond exists between phosphorus compounds and sediments, reduction of total phosphorus (TP) (more than 76%), in both facilities was associated to the removal of total suspended solids (TSS) (more than 84%). The efficiency of nitrogen in IP is 28% higher than IT. Effective nitrification occurred in IT and particulate forms of nitrogen were removed through sedimentation and media filters. Decrease in ammonium- nitrogen (NH4-N) and nitrite-nitrogen (NO2-N), and increase in nitrate-nitrogen (NO3-N) fraction forms indicated that effective nitrification and denitrification occurred in IP. Hydrologic factors such as rainfall depth and rainfall intensity affected nutrient treatment capabilities of urban stormwater LID facilities The greatest monitored rainfall intensity of 11 mm/hr for IT yielded to 34% and 55% removal efficiencies for TN and TP, respectively, whereas, low rainfall intensities below 5 mm resulted to 100 % removal efficiency. The greatest monitored rainfall intensity for IP was 27 mm/hr, which still resulted to high removal efficiencies of 98% and 97% for TN and TP, respectively. Water quality assessment showed that both facilities were effective in reducing the amount of nutrients; however, IP was found to be more efficient than IT due to its additional provisions for plant uptake and larger storage volume.

Isolation Technologies for Single-crystalline Silicon MEMS Structures Using Trench Oxide (트렌치 산화막을 이용한 단결정실리콘 MEMS 구조물의 절연기술에 관한 연구)

  • Lee, Sang-Chul;Kim, Im-Jung;Kim, Jong-Pal;Park, Sang-Jun;Yi, Sang-Woo;Cho, Dong-Il
    • Journal of Sensor Science and Technology
    • /
    • v.9 no.4
    • /
    • pp.297-306
    • /
    • 2000
  • To improve the performance of MEMS devices, fabricating single-crystalline silicon HARS (high aspect ratio structure) with thicknesses of up to several tens of micrometers has been an active research topic in recent years. However, achieving electrical isolation, which is required for actuating a structure or sensing an electrical signal, has been one of the main problems in single-crystalline silicon HARS fabrication technologies. In this paper, new isolation technologies using high aspect ratio oxide beams and sidewalls are developed to achieve electrical isolation between electrodes of single-crystalline silicon HARS. The developed isolation technologies use insulating oxide structural supports from either the structural sides or from the bottom. In this case because the trench oxide supports have a depth of several tens of ${\mu}m$, the effects of residual stress must be considered. In this paper, insulating supports are fabricated using PECVD TEOS films, the residual stress of the insulating supports is measured, and the effect of the residual stress on the structure is analyzed. It is shown using microresonators, that the developed isolation technologies can be effectively used for HARS using single-crystalline silicon.

  • PDF

S-velocity and Radial Anisotropy Structures in the Western Pacific Using Partitioned Waveform Inversion (분할 파형 역산을 사용한 서태평양 지역 S파 속도 및 방사 이방성 구조 연구)

  • Ji-hoon Park;Sung-Joon Chang;Michael Witek
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.365-384
    • /
    • 2023
  • We applied the partitioned waveform inversion to 2,026 event data recorded at 173 seismic stations from the Incorporated Research Institutions for Seismology Data Managing Center and the Ocean Hemisphere network Project to estimate S-wave velocity and radial anisotropy models beneath the Western Pacific. In the Philippine Sea plate, high-Vs anomalies reach deeper in the West Philippine basin than in the Parece-Vela basin. Low-Vs anomalies found at 80 km below the Parece-Vela basin extend deeper into the West Philippine Basin. This velocity contrast between the basins may be caused by differences in lithospheric age. Low-Vs anomalies are observed beneath the Caroline seamount chain and the Caroline plate. Overall positive radial anisotropy anomalies are observed in the Western Pacific, but negative radial anisotropy is found at > 220 km depth on the subducting plate along the Mariana trench and at ~50 km in the Parece-Vela basin. Positive radial anisotropy is found at > 200 km depth beneath the Caroline seamount chain, which may indicate the 'drag' between the plume and the moving Pacific plate. High-Vs anomalies are found at 40 ~ 180 km depth beneath the Ontong-Java plateau, which may indicate the presence of unusually thick lithosphere due to underplating of dehydrated plume material.

Review on Research Result for Bophi Vum Chrome Mineralized Zone in Northwestern Myanmar (미얀마 북서부 보피붐 크롬광화대 연구결과 리뷰)

  • Heo, Chul-Ho;Ryoo, Chung-Ryul;Park, Gyesoon
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.499-508
    • /
    • 2019
  • Based on the preliminary surveys for the occurrences of the Muwellut chrome-nickel mineralized zone ($800km^2$) in northwestern Myanmar, Bophivum area was selected as the detailed exploration area after considering data source, geological potential, metallogenic province, necessity of resource development on target mineral, exploration activity, grade, ore deposit type, nearby operating mine, infrastructure and exploration prediction effect. From 2013 to 2016, KIGAM and DGSE carried out geological and geochemical survey with 1:1,000 scale, magnetic survey(areal extent, $1.672km^2$), trench survey(19 trench, total length 392 m), pitting survey(18 pit, total depth 42.6m), exploration drilling(6holes 600m, 2015; 13holes 617.4m). We analyzed Cr and Ni contents of 77 drill cores with specific gravity in Yangon DGSE analytical center. Considering surface geological survey, geochemical exploration, magnetic survey, trench survey and drilling data, we divided Bophivum area into 8 blocks. Resource estimation are divided into measured and indicated resources. Measured resource is about 9,790t and indicated resource is about 12,080t with the average grade of Cr 11.8% and Ni 0.34%. In case of Bophivum area, if we develop by tying up Webula chrome mineralized zone in the south, it will be possible to upgrade the medium-scale mine. Geologically, the ophiolite belt are distributed in the western and eastern part in Myanmar. So, the exploration technology obtained from exploation in Bophivum area will be helpful to discover the hidden chromitite ore body in Myanmar ophiolite belt in the future.

Gas Hydrate BSR-derived Heat Flow Variations on the South Shetland Continental Margin, Antarctic Peninsula (가스수화물 BSR을 이용한 남극반도 남쉐틀랜드 대륙주변부의 지열류량 변화)

  • Jin, Young-Keun;Nam, Sang-Heon;Kim, Yea-Dong;Kim, Kyu-Jung;Lee, Joo-Han
    • Ocean and Polar Research
    • /
    • v.25 no.2
    • /
    • pp.201-211
    • /
    • 2003
  • Bottom simulating reflectors (BSR), representing the base of the gas hydrate stability field, are widespread on the South Shetland continental margin (SSM), Antarctic Peninsula. With the phase diagram fur the gas hydrate stability field, heat flow can be derived from the BSR depth beneath the seafloor determined on multichannel seismic profiles. The heat flow values in the study area range from $50mW/m^2$ to $85mW/m^2$, averaging to $65mW/m^2$. Small deviation from the average heat flow values suggests that heat flow regime of the study area is relatively stable. The landward decrease of heat flow from the South Shetland Trench to the continental shelf would be attributed to the landward thickening of the accretionary prism and the upward advection of heat associated with fluid expulsion. The continental slope 1500m to 3000m deep, where BSRs are most distinguished in the SSM, shows relatively large variation of heat flow possibly due to complex tectonic activities in the study area. The local high heat flow anomalies observed along the slope may be caused by heat transport mechanisms along a NW-SE trending large-scale fault.

Optimal Design of Submarine Pipeline for Intake and Discharge of Seawater Desalination Facilities (해수 담수화 설비의 취수 및 배출수 해저 배관 최적화 설계)

  • Choi, Gwangmin;Han, Inseop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.599-609
    • /
    • 2017
  • Desalination plants have been recently constructed in many parts of the world due to water scarcity caused by population growth, industrialization and climate change. Most seawater desalination plants are designed with a submarine pipeline for intake and discharge. Submarine pipelines are installed directly on the bottom of the water body if the bottom is sandy and flat. Intake is located on a low-energy shoreline with minimal exposure to beach erosion, heavy storms, typhoons, tsunamis, or strong underwater currents. Typically, HDPE (High Density Polyethylene) pipes are used in such a configuration. Submarine pipelines cause many problems when they are not properly designed; HDPE pipelines can be floated or exposed to strong currents and wind or tidal action. This study examines the optimal design method for the trench depth of pipeline, analysis of on-bottom stability and dilution of the concentrate based on the desalination plant conducted at the Pacific coast of Peru, Chilca. As a result of this study, the submarine pipeline should be trenched at least below 1.8 m. The same direction of pipeline with the main wind is a key factor to achieve economic stability. The concentrate should be discharged as much as high position to yield high dilution rate.

Diversity of Deep-sea Piezophiles and Their Molecular Adaptations to High-pressure Environment

  • Kato, Chiaki;Sato, Takako;Tamegai, Hideyuki;Nakasone, Kaoru
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2007.05a
    • /
    • pp.80-82
    • /
    • 2007
  • We have isolated numerous cold deep-sea adapted microorganisms (piezophilic, formerly referred to as "barophilic" bacteria) using deep-sea research submersibles. Many of the isolates are novel psychrophilic bacteria, and we have identified several new piezophilic species, i.e., Photobacterium profundum, Shewanella violacea, Moritella japonica, Moritella yayanosii, Psychromonas kaikoi, and Colwellia piezophila. These piezophiles are involving to five genera in gamma-Proteobacteria subgroup and produce significant amounts of unsaturated fatty acids in their cell membrane fractions to maintain the membrane fluidity in cold and high-pressure environments. Piezophilic microorganisms have been identified in many deep-sea bottoms of many of the world oceans. Therefore, these microbes are well distributed on our planet. One of the isolated deep-sea piezophiles, Shewanella violacea strain DSS12 is a psychrophilic, moderately piezophilic bacterium from a sediment sample collected at the Ryukyu Trench (depth: 5,110 m), which grows optimally at 30 MPa and $8^{\circ}C$ but also grows at atmospheric pressure (0.1 MPa) and $8^{\circ}C$. We have examined this strain to elucidate the molecular basis for gene regulation at different pressure conditions because this strain is useful as a model bacterium for comparing the various features of bacterial physiology under pressure conditions. In addition, we completed the sequencing of the entire genome of this piezophilic bacterium and we expect that many biotechnologically useful genes will be identified from the genome information.

  • PDF

A Possibility of Dual Volcanic Chains in the Southern Part of Korea: Evidences from Geochemistry (한국 남부의 쌍화산대 가능성: 지화학적 근거)

  • Jong Gyu;Jin Seop;Maeng Eon;Kyonghee
    • Economic and Environmental Geology
    • /
    • v.33 no.4
    • /
    • pp.249-260
    • /
    • 2000
  • The development of dual volcanic chains, parallel to the trend of the subduction trench, is observed in the southern part of Korea. Elsewhere on the Earth volcanic arcs dominantly consist of two such chains. In the southern part of Korea, two volcanic chains within a single volcanic arc was developed. Kyongsang basin, where the first volcanic chain located, and Youngdong-Kwangju depression zone where the second volcanic zone located, showed sub-parallel volcanic rock distributed areas. Concentrations of incompatible elements in the southern part of Korea samples show clear across-arc variations, with lavas from the first volcanic chain being most depleted in these elements, all incompatible element concentrations increase towards the second volcanic chain. The above across-arc variation may be caused by the difference in solid phases coexisting with the fluid phases during the dehydration processes. The concentrations of incompatible elements, Zr/Y ratios, and Rb/K ratios indicate that the second volcanic chain (Youngdong-Kwangiu depression zone) was generated by low degrees of partial melting at the deeper depth compared to the conditions of the first volcanic chain (Kyongsang basin) and residual garnet probably attributed to the their partial melting.

  • PDF