Browse > Article
http://dx.doi.org/10.4313/TEEM.2014.15.1.49

The Fabrication of an Applicative Device for Trench Width and Depth Using Inductively Coupled Plasma and the Bulk Silicon Etching Process  

Woo, Jong-Chang (Nano Convergence Sensor Research Section, Electronics and Telecommunications Research Institute)
Choi, Chang-Auck (Nano Convergence Sensor Research Section, Electronics and Telecommunications Research Institute)
Kim, Chang-Il (School of Electrical and Electronics Engineering, Chung-Ang University)
Publication Information
Transactions on Electrical and Electronic Materials / v.15, no.1, 2014 , pp. 49-54 More about this Journal
Abstract
In this study, we carried out an investigation of the etch characteristics of silicon (Si) film, and the selectivity of Si to $SiO_2$ in $SF_6/O_2$ plasma. The etch rate of the Si film was decreased on adding $O_2$ gas, and the selectivity of Si to $SiO_2$ was increased, on adding $O_2$ gas to the $SF_6$ plasma. The optical condition of the Si film with this work was 1,350 nm/min, at a gas mixing ratio of $SF_6/O_2$ (=130:30 sccm). At the same time, the etch rate was measured as functions of the various etching parameters. The X-ray photoelectron spectroscopy analysis showed the efficient destruction of oxide bonds by ion bombardment, as well as the accumulation of high volatile reaction products on the etched surface. Field emission auger electron spectroscopy analysis was used to examine the efficiency of the ion-stimulated desorption of the reaction products.
Keywords
Etching; $SF_6$; ICP; XPS; AES;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 L. Ley, M. Cardona, Y. Baer, M. Campagna, W. D. Grobman, Topics in Applied Physics, L. Ley and M. Cardona, Vol. 27, Springer-Verlag, Berlin Heidelberg New-York.
2 B. A. De Angelis, C. Rizzo, S. Contarini, S. P. Howlett, Appl. Surf. Sci. 51 (1991) 177-183.   DOI   ScienceOn
3 C. H. Shan, W. Kowbel, Carbon 28 (1990) 287-299.   DOI
4 T. L. Barr, J. Vac. Sci. Technol. A 9 (1991) 1793-1805.   DOI
5 Thomas M. Miller, Amy E. Stevens Miller, John F. Paulson, and Xifan Liu, J. Chem. Phys. 100 (1994) 8841.   DOI
6 D. C. Hays, K. B. Jung, Y. B. Hahn, E. S. Lambers, S. J. Pearton, J. Donahue, D. Johnson, and R. J. Shul, J. Electrochem. Soc. 146 (1999) 3812-3816.   DOI
7 A. A. Ayon, R. A. Braff, C. C. Lin, H. H. Sawin, and M. A. Schmidt, J. Electrochem. Soc., 146, 139 (1999).
8 S. H. Lee, S. J. Yun, J. W. Lim, ETRI Journal 35 (2013) 1156.   DOI
9 R. J. Shul, C. G. Willison, and L. Zhang, SPIE, 3511, 252 (1998).
10 C. S.-B. Lee, S. Han, and N. C. Macdonald, in Proceedings of Solid State Sensor and Actuator Workshop, p. 45, June 1998.
11 J. G. Won, J. G. Koo, T. P. Rhee, H. S. Oh, J. H. Lee, ETRI Journal 35 (2013) 603.   DOI   ScienceOn
12 P. A. Clerc, L. Dellman, F. Gretillat, M. A. Gretillat, P. F. Indermuhle, S. Jeanneret. Ph. Luginbuhl, C. Marxer, T. L. Pfeffer, G. A. Racine, S. Roth, U. Staufer, C. Stebler, P. Thiegaud, and N. F. de Rooij, J. Micromech. Microeng., 8, 272 (1998).   DOI
13 W. D. Lang, Mater. Sci. Eng. R., 17, 1 (1997).
14 Y. S. Yang, I. K. You, H. Han, J. B. Koo, S. C. Lim, S. W. Jung, B. S. Na, H. M. Kim, M. S. Kim, S. H. Moon, ETRI Journal 35 (2013) 571.   DOI
15 B. D. Yang, J. M. Oh, H. J. Kang, S. H. Park, C. S. Hwang, M. K. Ryu, J. E. Pi, ETRI Journal 35 (2013) 610.   DOI
16 J. R. Holt, R. C. Hefty, M. R. Tate, S.T. Ceyer, J. Phys. Chem. 85 (2002) 3529-3532.
17 S. Gomez, R. J. Belen, M. Kiehlbauch, E. S. Aydil, J. Vac. Sci. Technol., A 22 (2004) 606-615.   DOI   ScienceOn
18 J. W. Bartha, J. Greschner, M. Puech, P. Maquin, Microelectron. Eng. 27 (1995) 453-456.   DOI
19 A. Burtsev, Y. X. Li, H. W. Zeijl, C. I. M. Beenakker, Microelectron. Eng. 40 (1998) 85-97.   DOI
20 L. R. Arana, N. de Mas, R. Schmidt, A. J. Franz, M. A. Schmidt, K. F. Jensen, J. Micromech. Microeng. 17 (2007) 384-392.   DOI
21 S. D. Park, J. H. Lim, C. K. Oh, H. C. Lee, and G. Y. Yeom, Appl. Phys. Lett. 88 (2006) 094107-094109.   DOI   ScienceOn
22 L. Sha and J. P. Chang, J. Vac. Sci. Technol. A 21 (2003) 1915-1922.
23 L. Sha, R. Puthenkovilakam, Y. S. Lin, and J. P. Chang, J. Vac. Sci. Technol. B 21 (2003) 2420-2427.   DOI
24 E. Sungauer,a_ E. Pargon, X. Mellhaoui, R. Ramos, G. Cunge, L. Vallier, O. Joubert, and T. Lill, J. Vac. Sci. Technol. B 25 (2007) 1640-1646.   DOI
25 G. H. Kim, K. T. Kim, D. P. Kim, and C. I. Kim, Thin Solid Films 475 (2005) 86-90.   DOI
26 A. M. Efremov, S. M. Koo, D. P. Kim, K. T. Kim, C. I. Kim, J. Vac. Sci. Technol., A 22 (2004) 2101-2106.   DOI
27 S. Tabara, Jpn. J. Appl. Phys. 36 (1997) 2508-2513.   DOI
28 C. P. D'Emic, K. K. Chan, J. Blum, J. Vac. Sci. Technol., B 10 (1992) 1105-1110.   DOI
29 K. S. Lee, I. H. Kim, C. B. Yeon, J. W. Lim, S. J. Yun, G. E. Jabbour, ETRI Journal 35 (2013) 587.   DOI
30 M. Boufnichel, S. Aachboun, F. Grangeon, P. Lefaucheux, P. Ranson, J. Vac. Sci. Technol., B 20 (2002) 1508-1513.   DOI
31 L. Sha, B. O. Cho, and J. P. Chang, J. Vac. Sci. Technol. A 20 (2002) 1525-1531.   DOI   ScienceOn