• Title/Summary/Keyword: trehalose production

Search Result 52, Processing Time 0.025 seconds

Optimization of mixing ratio in preparation of gluten-free rice udon through response surface methodology (반응 표면 분석법을 이용한 글루텐 프리 쌀 우동 제조 최적화)

  • Park, Se-Jin;Eun, Jong-Bang
    • Korean Journal of Food Science and Technology
    • /
    • v.53 no.6
    • /
    • pp.739-748
    • /
    • 2021
  • This study focuses on the use of rice in the production of gluten-free rice udon (GFU) through an optimized mixing ratio, using the Box-Behnken response surface methodology (RSM). Different additional levels of rice flour (A, 40-60 g), acetylated distarch adipate (B, 10-20 g), and trehalose (C, 0-3 g) were used as variables, while water absorption level, volume, cooking loss, solid yield, lightness, texture properties, proximate compositions of GFU and turbidity of cooking water were set as responses in the RSM design model. The optimum mixing ratio for the preparation of gluten-free rice udon was obtained for 60.00 g of rice flour, 18.81 g of acetylated distarch adipate without the addition of trehalose. The response values of the optimized samples were water absorption (60.94%), volume (34.94%), turbidity of the cooking water (0.37), cooking loss (4.77%), solid yield (1.55 g), lightness value (70.04), hardness (2.53 N), springiness (0.18), gumminess (10.45 N), chewiness (1.83 N), and cohesiveness (2.89). This study has shown that rice flour can replace wheat flour to manufacture udon at an optimized mixing ratio successfully derived by statistical estimation method.

Production of Aminolevulinic Acid by Recombinant Escherichia coli Co-expressing hemA and otsBA Using Crude Glycerol as Carbon Source (폐글리세롤을 탄소원으로 hemA와 otsBA를 공동 발현하는 재조합대장균 배양을 통한 아미노레블린산 생산)

  • Yan, Jingmei;Pham, Diep Ngoc;Kang, Dae-Kyung;Kim, Sung Bae;Kim, Chang-Joon
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.3
    • /
    • pp.341-348
    • /
    • 2016
  • This study aimed to develop a microbial process for producing aminolevulinic acid (ALA) using crude glycerol. In the culture of ALA-producing cells (Escherichia coli/pH-hemA) in a medium containing crude glycerol, the cell density and production were 1.8-fold and 1.2-fold lower than those obtained from pure glycerol, respectively. However, the cell growth and production were improved by supplementing the medium with trehalose (30 or 100 g/l). Engineered cells (E. coli/pH-hemA/pS-otsBA) were constructed to express otsBA and their culture performance was compared with that of control cells (E. coli/pH-hemA/ pSTV28). The effects of isopropyl β-D-1-thiogalactopyranoside (IPTG) concentration and the time of induction were examined to improve the cell growth and ALA production in engineered cells cultured using crude glycerol. When 0.6 mM of IPTG was added at the beginning of the exponential growth phase, the ALA produced by cells was 2,121 mg/l, which was comparable to that from pure glycerol. The results demonstrate that otsBA expression endowed cells with the capacity to tolerate the toxicity of crude glycerol for direct use.

Mass-Based Metabolomic Analysis of Lactobacillus sakei and Its Growth Media at Different Growth Phases

  • Lee, Sang Bong;Rhee, Young Kyoung;Gu, Eun-Ji;Kim, Dong-Wook;Jang, Gwang-Ju;Song, Seong-Hwa;Lee, Jae-In;Kim, Bo-Min;Lee, Hyeon-Jeong;Hong, Hee-Do;Cho, Chang-Won;Kim, Hyun-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.925-932
    • /
    • 2017
  • Changes in the metabolite profiles of Lactobacillus sakei and its growth media, based on different culture times (0, 6, 12, and 24 h), were investigated using gas chromatography-mass spectrometry (MS) and liquid chromatography-MS with partial least squares discriminant analysis, in order to understand the growth characteristics of this organism. Cell and media samples of L. sakei were significantly separated on PLS-DA score plots. Cell and media metabolites, including sugars, amino acids, and organic acids, were identified as major metabolites contributing to the difference among samples. The alteration of cell and media metabolites during cell growth was strongly associated with energy production. Glucose, fructose, carnitine, tryptophan, and malic acid in the growth media were used as primary energy sources during the initial growth stage, but after the exhaustion of these energy sources, L. sakei could utilize other sources such as trehalose, citric acid, and lysine in the cell. The change in the levels of these energy sources was inversely similar to the energy production, especially ATP. Based on these identified metabolites, the metabolomic pathway associated with energy production through lactic acid fermentation was proposed. Although further studies are required, these results suggest that MS-based metabolomic analysis might be a useful tool for understanding the growth characteristics of L. sakei, the most important bacterium associated with meat and vegetable fermentation, during growth.

Metabolic profiles of Wolfiporia cocos mycelia cultivated under light and dark conditions

  • Jae-Gu, Han;Sang Suk, Kim;Doo-Ho, Choi;Gi-Hong, An;Kang-Hyo, Lee
    • Journal of Mushroom
    • /
    • v.20 no.4
    • /
    • pp.187-192
    • /
    • 2022
  • Wolfiporia cocos is an edible fungus commercially cultivated in Asia. To investigate metabolic changes of W. cocos mycelia under both light and dark culture conditions, gas chromatography mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) analyses were performed. In terms of the total amount of sugars, alcohols, amino acids, organic acids, fatty acids, and purines, there no significant differences between the W. cocos mycelia cultivated under light (L) or dark (D) conditions (p < 0.05). However, there were some differences with respect to the production of particular sugars and proteins. The levels of trehalose (L: 17.2 ± 0.3% vs. D: 13.9 ± 1.6%), maltose (L: 0.9 ± 0.1% vs. D: 0.3 ± 0.1%), turanose (L: 0.7 ± 0.2% vs. D: 0.1 ± 0.1%), glutamine (L: 1.6 ± 0.3% vs. D: 0.7 ± 0.2%), and proline (L: 0.3 ± 0% vs. D: 0.1 ± 0%) were all significantly higher under light condition (p < 0.05). In contrast, the levels of galactose (L: 13.7 ± 1.2% vs. D: 17.6 ± 2.0%), aspartic acid (L: 0.6 ± 0.1 % vs. D: 0.9 ± 0.1%), cystathionine (L: 0.6 ± 0.1% vs. D: 0.8 ± 0 %), and malic acid (L: 0.7 ± 0.1% vs. D: 1.2 ± 0.1%) were higher under the dark condition. It is worth noting that the amount of pachymic acid, a pharmaceutically active compound of W. cocos, was 1.68 times greater under the light condition (p < 0.05).

Study on Persistent Infection of Japanese Encephalitis Virus Beijing-l Strain in Serum-free Sf9 Cell Cultures

  • Kim, Hun;Lee, Su-Jeen;Park, Jin-Yong;Park, Yong-Wook;Kim, Hyun-Sung;Kang, Heui-Yun;Hur, Byung-Ki;Ryu, Yeon-Woo;Han, Sang-In
    • Journal of Microbiology
    • /
    • v.42 no.1
    • /
    • pp.25-31
    • /
    • 2004
  • Sf9 cells have obvious advantages for the conventional production technology of vaccine. They are useful tools for high concentration and large-scale cultures. Sf9 cells were grown to maximal concentration, 8${\times}$l0$\^$6/ cells/$m\ell$ in a 500$m\ell$ spinner flask, with a doubling time at the exponentially growing phase of 24.5 hours, using serum-free media. To explore the ability of Sf9 cells to be infected by the Japanese encephalitis (JE) virus Beijing-l strain, Sf9 cells were infected with the virus. By 4-5 days post-infection, 10-15 % of the Sf9 cells showed cytopathic effect (CPE), from granularity to the formation of syncytia and multinucleated giant cells continuously observed over a period of 35 days. Positive fluorescent reactions were detected in 30-40% of cells infected with the JE virus Beijing-l strain, and the uninfected Sf9 cells were completely negative. Virus particles, propagated in Sf9 and Vero cells, were concentrated by sedimentation on 40% trehalose cushions by ultracentrifugation, and showed identical patterns of viral morphogenesis. Complete virus particles, 40 to 50 nm in diameter, were observed, and JE virus envelope (E) proteins, at 53 kDa, were found in the western blot analysis to the anti-JE virus E protein monoclonal antibody and reacted as a magenta band in the same position to the glycoprotein staining. To evaluate whether the infectious virus was produced in Sf9 cells inoculated with the JE virus Beijing-l stain, Sf9 cells were inoculated with the virus, and sample harvested every 5 days. The titers of the JE virus Beijing-l strain rose from 1.0${\times}$l0$\^$5/ to 1.5${\times}$l0$\^$6/ pfu/$m\ell$. The infected Sf9 cells could be subcultured in serum-free medium, with no change in the plaque sizes formed by the JE virus Beijing-l strain in the plaque assay. It is suggested that the ability of the JE virus Beijing-l strain to infect Sf9 cells in serum-free media will provide a useful insect cell system, where the JE virus replication, cytopathogenicity and vaccine immunogen can be studied.

A Study on the Fermentation Characteristics of Yeast for Rice Beer Separated from Traditional Nuruk (전통누룩으로부터 분리한 효모의 쌀맥주 발효 특성 연구)

  • Jeong, Ui Jeong;Kim, Kyung Seob;Park, Ji Young;Cheong, Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.11
    • /
    • pp.376-385
    • /
    • 2019
  • This study was undertaken is to isolate brewing yeast suitable for rice beer fermentation from the traditional Nuruk, and to identify the brewing ability of the isolated yeast. After 6 months of research, four brewing yeast isolated from traditional Nuruk showed a normal fermentation pattern in terms of physicochemical data (pH, brix, alcohol content) and higher vitality, as compared to commercial brewing yeast. The concentrations of higher alcohol and ester, that impart the aroma to beer, were 78.4 to 106.5 ppm and 15.1 to 29.3 ppm, respectively. In particular, S. cerevisiae (KCCM 90313) bestowed significantly higher contents of higher alcohol and ester concentrations than rice beer prepared from commercial yeast. We conclude that the four variants of yeast isolated from traditional Nuruk are potentially suitable for manufacturing rice beer. Especially, the S. cevisiae (KCCM 90313) yeast shows excellent yeast activity and aroma production, thereby displaying potential application for manufacturing rice beer in the future.

Transcriptional and Mycolic Acid Profiling in Mycobacterium bovis BCG In Vitro Show an Effect for c-di-GMP and Overlap between Dormancy and Biofilms

  • Cruz, Miguel A. De la;Ares, Miguel A.;Rodriguez-Valverde, Diana;Vallejo-Cardona, Alba Adriana;Flores-Valdez, Mario Alberto;Nunez, Iris Denisse Cota;Aceves-Sanchez, Michel de Jesus;Lira-Chavez, Jonahtan;Rodriguez-Campos, Jacobo;Bravo-Madrigal, Jorge
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.811-821
    • /
    • 2020
  • Mycobacterium tuberculosis produces mycolic acids which are relevant for persistence, recalcitrance to antibiotics and defiance to host immunity. c-di-GMP is a second messenger involved in transition from planktonic cells to biofilms, whose levels are controlled by diguanylate cyclases (DGC) and phosphodiesterases (PDE). The transcriptional regulator dosR, is involved in response to low oxygen, a condition likely happening to a subset of cells within biofilms. Here, we found that in M. bovis BCG, expression of both BCG1416c and BCG1419c genes, which code for a DGC and a PDE, respectively, decreased in both stationary phase and during biofilm production. The kasA, kasB, and fas genes, which are involved in mycolic acid biosynthesis, were induced in biofilm cultures, as was dosR, therefore suggesting an inverse correlation in their expression compared with that of genes involved in c-di-GMP metabolism. The relative abundance within trehalose dimycolate (TDM) of α-mycolates decreased during biofilm maturation, with methoxy mycolates increasing over time, and keto species remaining practically stable. Moreover, addition of synthetic c-di-GMP to mid-log phase BCG cultures reduced methoxy mycolates, increased keto species and practically did not affect α-mycolates, showing a differential effect of c-di-GMP on keto- and methoxy-mycolic acid metabolism.

Development of a Biofungicide Using a Mycoparasitic Fungus Simplicillium lamellicola BCP and Its Control Efficacy against Gray Mold Diseases of Tomato and Ginseng

  • Shin, Teak Soo;Yu, Nan Hee;Lee, Jaeho;Choi, Gyung Ja;Kim, Jin-Cheol;Shin, Chul Soo
    • The Plant Pathology Journal
    • /
    • v.33 no.3
    • /
    • pp.337-344
    • /
    • 2017
  • To develop a commercial product using the mycoparasitic fungus Simplicillium lamellicola BCP, the scale-up of conidia production from a 5-l jar to a 5,000-l pilot bioreactor, optimization of the freeze-drying of the fermentation broth, and preparation of a wettable powder-type formulation were performed. Then, its disease control efficacy was evaluated against gray mold diseases of tomato and ginseng plants in field conditions. The final conidial yields of S. lamellicola BCP were $3.3{\times}10^9conidia/ml$ for a 5-l jar, $3.5{\times}10^9conidia/ml$ for a 500-l pilot vessel, and $3.1{\times}10^9conidia/ml$ for a 5,000-l pilot bioreactor. The conidial yield in the 5,000-l pilot bioreactor was comparable to that in the 5-l jar and 500-l pilot vessel. On the other hand, the highest conidial viability of 86% was obtained by the freeze-drying method using an additive combination of lactose, trehalose, soybean meal, and glycerin. Using the freeze-dried sample, a wettable powder-type formulation (active ingredient 10%; BCP-WP10) was prepared. A conidial viability of more than 50% was maintained in BCP-WP10 until 22 weeks for storage at $40^{\circ}C$. BCP-WP10 effectively suppressed the development of gray mold disease on tomato with control efficacies of 64.7% and 82.6% at 500- and 250-fold dilutions, respectively. It also reduced the incidence of gray mold on ginseng by 65.6% and 81.3% at 500- and 250-fold dilutions, respectively. The results indicated that the new microbial fungicide BCP-WP10 can be used widely to control gray mold diseases of various crops including tomato and ginseng.

A Study on the Quality Characteristics of Rice Beer Using Brewing Yeast isolated from Nuruk (누룩에서 분리한 양조용 효모를 이용한 쌀맥주의 품질특성 연구)

  • Lee, Young Bog;Ko, Dong Jun;Cheong, Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.340-347
    • /
    • 2019
  • This study investigated the brewing properties of rice beer made with yeast isolated from traditional whole wheat nuruk. The experimental method was followed by alcohol fermentation and quality analysis for six months after separating the yeast from nuruk. The yeasts isolated from traditional nuruk showed normal fermentation characteristics, like those of commercial yeast, in terms of alcohol production capability, sugar content, and pH reducing power. Especially, the yeast (KCCM 301) isolated from whole wheat nuruk showed higher contents of glycogen and trehalose than that of commercial yeast, and so KCCM 301 yeast has excellent yeast vitality. Meanwhile, the yeast (KCCM 90301) isolated from traditional Nuruk produced significantly higher alcohol and ester contents than that of commercial yeast. This has a positive effect for supplementing the taste and aroma of rice beer. In conclusion, the yeasts isolated from whole wheat nuruk showed the general alcohol fermentation pattern and aroma content of rice beer. These yeasts seem to be effective in strengthening the flavor of rice beer.

Enhanced drought and oxidative stress tolerance in transgenic sweetpotato expressing a codA gene (CodA 고발현 형질전환 고구마의 산화 및 건조 스트레스 내성 증가)

  • Park, Sung-Chul;Kim, Myoung Duck;Kim, Sun Ha;Kim, Yun-Hee;Jeong, Jae Cheol;Lee, Haeng-Soon;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.42 no.1
    • /
    • pp.19-24
    • /
    • 2015
  • Glycine betaine (GB) is one of the compatible solutes that accumulate in the chloroplasts of certain halotolerant plants under salt or cold stress. The codA gene for choline oxidase, the enzyme that converts choline into GB, has been cloned from a soil bacterium Arthrobacter globiformis. We generated transgenic sweetpotato plants [Ipomoea batatas (L.) Lam] expressing codA gene in chloroplasts under the control of the SWPA2 promoter (referred to as SC plants) and evaluated SC plants under oxidative and drought stresses. SC plants showed enhanced tolerance to methyl viologen (MV)-mediated oxidative stress and drought stress due to induced expression of codA. At $5{\mu}M$ of MV treatment, all SC plants showed enhanced tolerance to MV-mediated oxidative stress through maintaining low ion leakage and increased GB levels compared to wild type plants. When plants were subjected to drought conditions, SC plants showed enhanced tolerance to drought stress through maintaining high relative water contents and increased codA expression compared to wild type plants. These results suggest that the SC plants generated in this study will be useful for enhanced biomass production on global marginal lands.