Browse > Article
http://dx.doi.org/10.14480/JM.2022.20.4.187

Metabolic profiles of Wolfiporia cocos mycelia cultivated under light and dark conditions  

Jae-Gu, Han (Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
Sang Suk, Kim (Citrus Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration)
Doo-Ho, Choi (Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
Gi-Hong, An (Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
Kang-Hyo, Lee (Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
Publication Information
Journal of Mushroom / v.20, no.4, 2022 , pp. 187-192 More about this Journal
Abstract
Wolfiporia cocos is an edible fungus commercially cultivated in Asia. To investigate metabolic changes of W. cocos mycelia under both light and dark culture conditions, gas chromatography mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) analyses were performed. In terms of the total amount of sugars, alcohols, amino acids, organic acids, fatty acids, and purines, there no significant differences between the W. cocos mycelia cultivated under light (L) or dark (D) conditions (p < 0.05). However, there were some differences with respect to the production of particular sugars and proteins. The levels of trehalose (L: 17.2 ± 0.3% vs. D: 13.9 ± 1.6%), maltose (L: 0.9 ± 0.1% vs. D: 0.3 ± 0.1%), turanose (L: 0.7 ± 0.2% vs. D: 0.1 ± 0.1%), glutamine (L: 1.6 ± 0.3% vs. D: 0.7 ± 0.2%), and proline (L: 0.3 ± 0% vs. D: 0.1 ± 0%) were all significantly higher under light condition (p < 0.05). In contrast, the levels of galactose (L: 13.7 ± 1.2% vs. D: 17.6 ± 2.0%), aspartic acid (L: 0.6 ± 0.1 % vs. D: 0.9 ± 0.1%), cystathionine (L: 0.6 ± 0.1% vs. D: 0.8 ± 0 %), and malic acid (L: 0.7 ± 0.1% vs. D: 1.2 ± 0.1%) were higher under the dark condition. It is worth noting that the amount of pachymic acid, a pharmaceutically active compound of W. cocos, was 1.68 times greater under the light condition (p < 0.05).
Keywords
Light; Metabolite; Mycelium; Pachymic acid; Wolfiporia cocos;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Avalos J, Schrott EL. 1990. Photoinduction of carotenoid biosynthesis in Gibberella fujikuroi. FEMS Microbiol Lett 66: 295-298.   DOI
2 Bayram O, Braus GH. 2012. Coordination of secondary metabolism and development in fungi: the velvet family of regulatory proteins. FEMS Microbiol Rev 36: 1-24.   DOI
3 Bayram O, Krappmann S, Ni M, Bok JW, Helmstaedt K, Valerius O, Braus-Stromeyer S, Kwon NJ, Keller NP, Yu JH, Braus GH. 2008. VelB/VeA/LaeA complex coordinates light signal with fungal development and secondary metabolism. Science 320: 1504-1506.   DOI
4 Caro Y, Venkatachalam M, Lebeau J, Fouillaud M, Dufosse L. 2017. Pigments and colorants from filamentous fungi. In Merillon JM, Ramawat KG (ed.), Fungal Metabolites, Springer International Publishing. Switzerland. 499-568.
5 Chang HY. 2000. Study on prevention of foreign material formation in Sclerotium of Poria cocos. Korean J Plant Res 13: 147-153.
6 Gapter L, Wang Z, Glinski J, Ng KY. 2005. Induction of apoptosis in prostate cancer cells by pachymic acid from Poria cocos. Biochem Biophys Res Commun 332: 1153-1161.   DOI
7 Lagashetti AC, Dufosse L, Singh SK, Singh PN. 2019. Fungal Pigments and Their Prospects in Different Industries. Microorganisms 7: 604.   DOI
8 Lee YH, Lee NH, Bhattarai G, Kim GE, Lee IK, Yun BS, Hwang PH, Yi HK. 2013. Anti-inflammatory effect of pachymic acid promotes odontoblastic differentiation via HO-1 in dental pulp cells. Oral Dis 19: 193-199.   DOI
9 Ling H, Zhang Y, Ng KY, Chew EH. 2011. Pachymic acid impairs breast cancer cell invasion by suppressing nuclear factor-kBdependent matrix metalloproteinase-9 expression. Breast Cancer Res Treat 126: 609-20.   DOI
10 Luangharn T, Karunarathna SC, Hyde KD, Chukeatirote E. 2014. Optimal conditions of mycelia growth of Laetiporus sulphureus sensu lato. Mycology 5: 221-227.   DOI
11 Martin JF. 2017. Key role of LaeA and velvet complex proteins on expression of β-lactam and PR-toxin genes in Penicillium chrysogenum: cross-talk regulation of secondary metabolite pathways. J Ind Microbiol Biotechnol 44: 525-535.   DOI
12 Sun Y. 2014. Biological activities and potential health benefits of polysaccharides from Poria cocos and their derivatives. Int J Biol Macromol 68: 131-134.   DOI
13 Wang Y, Li T, Zhao Y, Zhang J, Liu H. 2012. Contents of some metabolites in the peel and flesh of the medicinal mushroom Wolfiporia cocos (F.A. Wolf) Ryvarden et Gilb. (higher Basidiomycetes). Int J Med Mushrooms 14: 79-83.   DOI
14 Zalokar M. 1954. Studies on biosynthesis of carotenoids in Neurospora crassa. Arch Biochem Biophys 50: 71-80.   DOI
15 Zhou L, Zhang Y, Gapter LA, Ling H, Agarwal R, Ng KY. 2008. Cytotoxic and anti-oxidant activities of lanostane-type triterpenes isolated from Poria cocos. Chem Pharm Bull (Tokyo) 56: 1459-1462.   DOI