• Title/Summary/Keyword: trehalose production

Search Result 53, Processing Time 0.026 seconds

Isolation of a Thermophilic Bacillus sp. Producing the Thermostable Cellulase-free Xylanase,and Properties of the Enzyme (내열성 Cellulase-free Xylanase를 생산하는 고온성 Bacillus sp.의 분리 및 효소 특성)

  • Kim, Dae-Joon;Shin, Han-Jae;Min, Bon-Hong;Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.3
    • /
    • pp.304-310
    • /
    • 1995
  • A thermophilic bacterium producing the extracellular cellulase-free xylanase was isolated from soil and has been identified as Bacillus sp. The optimal growth temperature was 50$\circ$C and the optimal pH, 7.0. Under the optimal growth condition, maximal xylanase production was 2.2 units/ml in the flask culture. The enzyme production was induced by xylan and xylose, but was repressed by sucrose or trehalose. The partially purified xylanase was most active at 70$\circ$C. It was found that the enzyme was stable at 65$\circ$C for 10 hours with over 75% of the activity. The enzyme was most active at pH 7.0 and retained 90% of its maximum activity between pH 5.0 and pH 9.0 though Bacillus sp. was not grown on alkaline conditions (>pH 8.0). In addition, the activity of xylanase was over 60% at pH 10.0. At the ambient temperature, the enzyme was stable over a pH range of 5.0 to 9.0 for 10 h, indicating that the enzyme is thermostable and alkalotolerant. The activity of xylanase was completely inhibited by metal ions including Hg$^{2+}$ and Fe$^{2+}$, while EDTA, phenylmethylsulfonyl fluoride (PMSF), $\beta$-mercaptoethanol and SDS didn't affect its activity. The enzyme was also identified to exert no activity on carboxymethylcellulose, laminarin, galactomannan, and soluble starch.

  • PDF

Biochemical Changes during Embryonic Diapause in Domestic Silkworm, Bombyx mori L. (Lepidoptera: Bombycidae)

  • Singh, Tribhuwan;Saratchandra, Beera
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.1
    • /
    • pp.1-12
    • /
    • 2002
  • Ecophysiologically diapause represents a syndrome of physiological and biochemical characteristics, all of which ensure survival during a long period of dormancy. Since, silkworm enters diapause as embryo at the early embryonic stage, the duration of egg life depends on the duration of embryonic diapause. The nature of diapause in silkworm, Bombyx mori, is primarily determined by genetic characters and endocrinologicnl mechanisms, mediated by environmental factors such as temperature and photoperiod. Hibernating potency value besides nucleic acid and carbohydrate metabolism, production and utilization of sorbitol are also equally responsible for induction, initiation, determination, maintenance and termination of diapause. Embryonic diapause in Bombyx moir, induced by active secretion of sub-oesophageal ganglion is attributed to hormonal system and metabolic adjustment, which serves to bring about a new physiological state. Metabolic conversion of trehalose to glycogen at induction, glycogen to sorbitol at initiation and sorbitol to glycogen at termination of diapause is correlated and in each metabolic shift a key enzyme becomes active in response to hormonal and environmental stimulation. An attempt has been made in this review article to discuss briefly the nature of embryonic diapause, influence of various factors on diapause nature, hormonal mechanism of diapause besides biochemical composition of egg, nucleic acid and carbohydrate metabolism, production and utilization of sorbitol in relation to induction, determination, maintenance, initiation and termination of diapause in the silkworm, Bombyx mori.

Sigma S Involved in Bacterial Survival of Ralstonia pseudosolanacearum (Ralstonia pseudosolanacearum 생존에 관여하는 Sigma S 역할)

  • Hye Kyung Choi;Eun Jeong Jo;Jee Eun Heo;Hyun Gi Kong;Seon-Woo Lee
    • Research in Plant Disease
    • /
    • v.30 no.2
    • /
    • pp.148-156
    • /
    • 2024
  • Ralstonia pseudosolanacearum, a plant pathogenic bacterium that can survive for a long time in soil and water, causes lethal wilt in the Solanaceae family. Sigma S is a part of the RNA polymerase complex, which regulates gene expression during bacterial stress response or stationary phase. In this study, we investigated the role of sigma S in R. pseudosolanacearum under stress conditions using a rpoS-defective mutant strain of R. pseudosolanacearum and its wild-type strain. The phenotypes of rpoS-defective mutant were complemented by introducing the original rpoS gene. There were no differences observed in bacterial growth rate and exopolysaccharide production between the wild-type strain and the rpoS mutant. However, the wild-type strain responded more sensitively to nutrient deficiency compared to the mutant strain. Under the nutrient deficiency, the rpoS mutant maintained a high bacterial viability for a longer period, while the viability of the wild-type strain declined rapidly. Furthermore, a significant difference in pH was observed between the culture supernatant of the wild-type strain and the mutant strain. The pH of the culture supernatant for the wild-type strain decreased rapidly during bacterial growth, leading to medium acidification. The rapid decline in the wild-type strain's viability may be associated with medium acidification and bacterial sensitivity to acidity during transition to the stationary phase. Interestingly, the rpoS mutant strain cannot utilize acetic acid, D-alanine, D-trehalose, and L-histidine. These results suggest that sigma S of R. pseudosolanacearum regulates the production or utilization of organic acids and controls cell death during stationary phase under nutrient deficiency.

Antibiofilm and Anti-β-Lactamase Activities of Burdock Root Extract and Chlorogenic Acid against Klebsiella pneumoniae

  • Rajasekharan, Satish Kumar;Ramesh, Samiraj;Satish, Ann Susan;Lee, Jintae
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.542-551
    • /
    • 2017
  • Small phytochemicals have been successfully adopted as antibacterial chemotherapies and are being increasingly viewed as potential antibiofilm agents. Some of these molecules are known to repress biofilm and toxin production by certain bacterial and yeast pathogens, but information is lacking with regard to the genes allied with biofilm formation. The present study was performed to investigate the inhibitory effect of burdock root extract (BRE) and of chlorogenic acid (CGA; a component of BRE) on clinical isolates of Klebsiella pneumoniae. BRE and CGA exhibited significant antibiofilm activity against K. pneumoniae without inflicting any harm to its planktonic counterparts. In vitro assays supported the ${\beta}$-lactamase inhibitory effect of CGA and BRE while in silico docking showed that CGA bound strongly with the active sites of sulfhydryl-variable-1 ${\beta}$-lactamase. Furthermore, the mRNA transcript levels of two biofilm-associated genes (type 3 fimbriae mrkD and trehalose-6-phosphate hydrolase treC) were significantly downregulated in CGA- and BRE-treated samples. In addition, CGA inhibited biofilm formation by Escherichia coli and Candida albicans without affecting their planktonic cell growth. These findings show that BRE and its component CGA have potential use in antibiofilm strategies against persistent K. pneumoniae infections.

A Mushroom-Rice(Ganoderma lucidum) development which uses the brown rice (현미를 이용한 영지버섯쌀 생산)

  • 정인창;곽희진
    • Journal of Applied Tourism Food and Beverage Management and Research
    • /
    • v.14 no.1
    • /
    • pp.47-58
    • /
    • 2003
  • Brown rice was used as material for solid-substrate cultivation of Ganoderma lucidum. The hydration time with cold water appeared to be 10 hours for brown rice, but the final water content was much less than optimum water content(65%). Hot water reduced the hydration time of brown rice, and the water content reached to 65% within 40 mins. From this result, hot water was better than cold water for the hydration of brown rice. We attempted to develop a practically applicable process by combining the soaking and sterilization. The water content of 65% appeared to be the best for the growth of the fungi and production of glucosamine related to the amount of mycelium. The content of free sugar increased far more in brown rice fermented with mycelium than in brown rice which was not fermented. Addition was most suitable 20% when add mushroom-rice to brown rice.

  • PDF

The Effects of Freeze Drying and Rehydration on Survival of Microorganisms in Kefir

  • Chen, Hsi-Chia;Lin, Chin-Wen;Chen, Ming-Ju
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.1
    • /
    • pp.126-130
    • /
    • 2006
  • The purpose of this research was to study the effect of freeze drying on the microorganisms in kefir. Influences of lyoprotectants and rehydrated media (water at $4^{\circ}C$, $25^{\circ}C$; 10% reconstituted milk at $4^{\circ}C$, $25^{\circ}C$) on the viability of lactic acid bacteria and yeasts in freeze-dried kefir were investigated. Kefir was made from cow milk which was inoculated with 5% kefir grains, and incubated at $20^{\circ}C$ for 20 h. Lyoprotectants (galactose, lactose, maltose, sucrose and trehalose) were added independently before dehydration of kefir by freeze drying. Results indicated significant loss in viability of microorganisms in kefir after freeze-drying. Addition of 10% galactose or 10% sucrose as lyoprotectants significantly increased the survival rates of both lactic acid bacteria and yeasts (p<0.05). The $4^{\circ}C$ rehydration temperature showed the best viabilities for yeasts, however, viability was not significantly affected by rehydration media (p>0.05).

Identification of Staphylococcus hyicus subsp. hyicus of swine, poultry and bovine origin with the API STAPH system (API STAPH system을 이용한 돼지, 닭 및 소유래 Staphylococcus hyicus subsp. hyicus의 동정)

  • Park, Cheong-kyu
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.3
    • /
    • pp.657-663
    • /
    • 1996
  • The API STAPH system was compared with conventional methods for identification of 214 strains of Staphylococcus hyicus subsp. hyicus isolated from cases of exudative epidermitis in piglets, skin of healthy pigs, skin of healthy chickens and bovine intramammary infections, and biochemical characteristics among the swine, avian and bovine strains were also compared. All of the swine and bovine strains produced acid within 24 hours from fructose, lactose and trehalose by conventional methods, but some of the avian strains showed a delayed positive reaction in these carbohydrates. These delayed positive strains in conventional methods gave usually negative results for them in the API STAPH system. With the API STAPH system, eighteen different profile numbers were encountered in 214 strains of swine, avian and bovine origin. The swine and bovine strains, respectively, were distributed among 4 profiles, while the avian strains were distributed among 17 profiles. The profile number observed most frequently in the strains of each animal species was uniformly 6 516 153. By conventional methods, approximately 96% of the swine strains were positive for ${\beta}$-glucuronidase, but not in any strains from chickens and cattle. For hyaluronidase production determined by degradation of sodium hyaluronidate in a solid culture medium, all the swine and bovine strains were positive, but only 37.5% of the avian strains were positive for it. From these findings, there were differences in the production of extracellular active substances between swine strains of Staphylococcus hyicus subsp. hyicus and those isolated from chickens and cattle.

  • PDF

Isolation, Identification, and Characterization of Ornithine-Producing Enterococcus faecalis OA18 from Kefir Grain (케피어그레인으로 제조한 요쿠르트로부터 Enterococcus faecalis OA18 균주의 분리 및 특성규명)

  • Yu, Jin-Ju;Kim, Su-Gon;Seo, Kyoung-Won;Oh, Suk-Heung
    • Korean Journal of Microbiology
    • /
    • v.47 no.3
    • /
    • pp.218-224
    • /
    • 2011
  • Lactic acid bacteria (LAB) OA18 was isolated from yogurt prepared by using Kefir Grain as a starter. The OA18 strain was a Gram-positive, cocci-type bacterium, and able to grow anaerobically with $CO_2$ production. The OA18 strain grew well on MRS broth supplemented with 50 mM arginine at $30-37^{\circ}C$ and pH of 7.0-9.0. The optimum temperature and pH for growth are $37^{\circ}C$ and pH 7.0. The isolate fermented ribose, D-glucose, cellobiose, D-trehalose, but not L-xylose, D-melibiose, and inositol. The 16S rRNA gene sequence of the isolate showed 99.8% homology with the Enterococcus faecalis 16S rRNA gene (Access no. AB012212). Based on the biochemical characteristics and 16S rRNA gene sequence analysis data, it was identified and named as E. faecalis OA18. The E. faecalis OA18 strain showed a high ornithine-producing capacity in the presence of arginine and also showed an antimicrobial activity against Streptomyces strains such as Streptomyces coelicolor subsp. Flavus, S. coeruleorubidus, S. coeruleoaurantiacus, S. coelicolor, S. coeruleoprunus. The cell growth of E. faecalis OA18 strain was maintained in MRS broth with a NaCl concentration of 0-7%.

Antimicrobial Susceptibility and Biochemical Characteristics of Streptococcus suis Isolated from Diseased Pigs in Gyeongbuk Province (경북지방 환돈에서 분리한 Streptococcus suis의 생화학적 성상 및 약제감수성)

  • Choi, Seong-Kyoon;Kim, Seong-Guk;Kim, Young-Hoan;Choi, Jeong-Hye;Jo, Min-Hee;Cho, Gil-Jae
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1549-1555
    • /
    • 2010
  • Streptococcus suis is a worldwide pathogen of a variety of porcine infection and has also been described as a pathogen for humans. We studied biochemical characteristics, antimicrobial susceptibility, and identification of polymerase chain reaction (PCR) of S. suis isolated from diseased pigs in Gyeongbuk province from 2004 to 2009. Sixty-one isolates were identified as S. suis by biochemical characteristics and PCR from 40 farms. The biochemical characteristics of S. suis isolates were production of VP-negative, hippurate, esculin, and arginine decarboxylase-positive, and fermentation of carbohydrate was variable lactose, trehalose, inulin, and raffinose, which was typeable 11 phenotype. In an antimicrobial susceptibility test, the majority of isolates were highly susceptible to amoxicillin/clavulanic acid, ampicillin, cephalothin, cefoperazone and florfenicol, while being highly resistant to streptomycin, kanamycin, amikacin, neomycin, erythromycin, clindamycin, and tetracycline. The isolates were divided into 11 phenotypes of biochemistry. By using PCR, the 16S-rRNA gene DNA fragment was detected at 304 bp from all of isolates. These results may provide the basic information needed to establish strategies for the prevention of S. suis infection in pigs.

Purification and Characterization of the Siderophore from Bacillus licheniformis K11, a Multi-functional Plant Growth Promoting Rhizobacterium. (다기능 PGPR균주 Bacillus licheniformis K11이 생산하는 항진균성 Siderophore의 정제와 특성)

  • Woo, Sang-Min;Woo, Jae-Uk;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.2
    • /
    • pp.128-134
    • /
    • 2007
  • Previously, we isolated plant growth promoting rhizobacterium (PGPR) Bacillus licheniformis K11 which could produce auxin, cellulase and siderophore. The siderophore of B. licheniformis K11 $(siderophore_{K11})$ was determined to be a catechol type siderophore which is produced generally by Bacillus spp. B. licheniformis K11 could produce the siderophore most highly after 96 h of incubation under nutrient broth at $20^{\circ}C$ with initial pH 9.0. For the production of the $siderophore_{K11}$, trehalose and $NH_4Cl$ were the best carbon and nitrogen sources in Davis minimal medium, respectively. The $siderophore_{K11}$ was Produced in M9 medium (pH 9.0) after 4 days at $20^{\circ}C$, and purified from culture broth of B. licheniformis K11 by using Amberlite XAD-2, Sephadex LH-20 column chromatography, and reversed-phase HPLC. The $siderophore_{K11}$ had the biocontrol activity against spore germination of P. capsici and F. oxysporum on potato dextrose agar (PDA). The results indicate that the $siderophore_{K11}$ is an antifungal mechanism of B. licheniformis K11 against phytopathogenic fungi.