Browse > Article
http://dx.doi.org/10.4014/jmb.1609.09043

Antibiofilm and Anti-β-Lactamase Activities of Burdock Root Extract and Chlorogenic Acid against Klebsiella pneumoniae  

Rajasekharan, Satish Kumar (School of Chemical Engineering, Yeungnam University)
Ramesh, Samiraj (Centre for Research and Development, PRIST University)
Satish, Ann Susan (Department of Biotechnology, Holy Cross College)
Lee, Jintae (School of Chemical Engineering, Yeungnam University)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.3, 2017 , pp. 542-551 More about this Journal
Abstract
Small phytochemicals have been successfully adopted as antibacterial chemotherapies and are being increasingly viewed as potential antibiofilm agents. Some of these molecules are known to repress biofilm and toxin production by certain bacterial and yeast pathogens, but information is lacking with regard to the genes allied with biofilm formation. The present study was performed to investigate the inhibitory effect of burdock root extract (BRE) and of chlorogenic acid (CGA; a component of BRE) on clinical isolates of Klebsiella pneumoniae. BRE and CGA exhibited significant antibiofilm activity against K. pneumoniae without inflicting any harm to its planktonic counterparts. In vitro assays supported the ${\beta}$-lactamase inhibitory effect of CGA and BRE while in silico docking showed that CGA bound strongly with the active sites of sulfhydryl-variable-1 ${\beta}$-lactamase. Furthermore, the mRNA transcript levels of two biofilm-associated genes (type 3 fimbriae mrkD and trehalose-6-phosphate hydrolase treC) were significantly downregulated in CGA- and BRE-treated samples. In addition, CGA inhibited biofilm formation by Escherichia coli and Candida albicans without affecting their planktonic cell growth. These findings show that BRE and its component CGA have potential use in antibiofilm strategies against persistent K. pneumoniae infections.
Keywords
Burdock root; chlorogenic acid; biofilms; K. pneumoniae; in silico docking; ${\beta}$-lactamase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Schroll C, Barken KB, Krogfelt KA, Struve C. 2010. Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol. 10: 179.   DOI
2 Di Martino P, Cafferini N, Joly B, Darfeuille-Michaud A. 2003. Klebsiella pneumoniae type 3 pili facilitate adherence and biofilm formation on abiotic surfaces. Res. Microbiol. 154: 9-16.   DOI
3 Boddicker JD, Anderson RA, Jagnow J, Clegg S. 2006. Signature-tagged mutagenesis of Klebsiella pneumoniae to identify genes that influence biofilm formation on extracellular matrix material. Infect. Immun. 74: 4590-4597.   DOI
4 Jagnow J, Clegg S. 2003. Klebsiella pneumoniae MrkDmediated biofilm formation on extracellular matrix- and collagen-coated surfaces. Microbiology 149: 2397-2405.   DOI
5 Chan YS, Cheng LN, Wu JH, Chan E, Kwan YW, Lee SM, et al. 2011. A review of the pharmacological effects of Arctium lappa (burdock). Inflammopharmacology 19: 245-254.   DOI
6 Edison AS, Uma Maheswari K, Brindha P. 2012. Protective role of Arctium lappa Linn. against arsenic trioxide using Silybum marianum Linn. as standard drug. Asian J. Chem. 26: 3749-3753.
7 Rajasekharan SK, Ramesh S, Bakkiyaraj D, Elangomathavan R, Kamalanathan C. 2015. Burdock root extracts limit quorum-sensing-controlled phenotypes and biofilm architecture in major urinary tract pathogens. Urolithiasis 43: 29-40.   DOI
8 Bakkiyaraj D, Nandhini JR, Malathy B, Pandian SK. 2013. The anti-biofilm potential of pomegranate (Punica granatum L.) extract against human bacterial and fungal pathogens. Biofouling 29: 929-937.   DOI
9 McClean KH, Winson MK, Fish L, Taylor A, Chhabra SR, Camara M, et al. 1997. Quorum sensing and Chromobacterium violaceum: exploitation of violacein production and inhibition for the detection of n-acylhomoserine lactones. Microbiology 143: 3703-3711.   DOI
10 Morohoshi T, Shiono T, Takidouchi K, Kato M, Kato N, Kato J, Ikeda T. 2007. Inhibition of quorum sensing in Serratia marcescens AS-1 by synthetic analogs of n-acylhomoserine lactone. Appl. Environ. Microbiol. 73: 6339-6344.   DOI
11 Bakkiyaraj D, Sivasankar C, Pandian SK. 2012. Inhibition of quorum sensing regulated biofilm formation in Serratia marcescens causing nosocomial infections. Bioorg. Med. Chem. Lett. 22: 3089-3094.   DOI
12 Mouton RP, Bongaerts GP, van Gestel M. 1979. Comparison of activity and beta-lactamase stability of cefotaxime with those of six other cephalosporins. Antimicrob. Agents Chemother. 16: 757-760.   DOI
13 Perret CJ. 1954. Iodometric assay of penicillinase. Nature 174: 1012-1013.   DOI
14 Rawat D, Nair D. 2010. Extended-spectrum ${\beta}$-lactamases in Gram Negative Bacteria. J. Glob. Infect. Dis. 2: 263-274.   DOI
15 Yoon MY, Lee KM, Park Y, Yoon SS. 2011. Contribution of cell elongation to the biofilm formation of Pseudomonas aeruginosa during anaerobic respiration. PLoS One 6: e16105.   DOI
16 Thenmozhi R, Nithyanand P, Rathna J, Pandian SK. 2009. Antibiofilm activity of coral-associated bacteria against different clinical M serotypes of Streptococcus pyogenes. FEMS Immunol. Med. Microbiol. 57: 284-294.   DOI
17 Drawz SM, Bonomo RA. 2010. Three decades of ${\beta}$-lactamase inhibitors. Clin. Microbiol. Rev. 23: 160-201.   DOI
18 Baig MH, Balaramnavar VM, Wadhwa G, Khan AU. 2015. Homology modeling and virtual screening of inhibitors against TEM- and SHV-type-resistant mutants: a multilayer filtering approach. Biotechnol. Appl. Biochem. 62: 669-680.   DOI
19 Dhingra KR. 2008. A case of complicated urinary tract infection: Klebsiella pneumoniae emphysematous cystitis presenting as abdominal pain in the emergency department. West. J. Emerg. Med. 9: 171-173.
20 Podschun R, Ullmann U. 1998. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin. Microbiol. Rev. 11: 589-603.
21 Goncalves Mdos S, Delattre C, Balestrino D, Charbonnel N, Elboutachfaiti R, Wadouachi A, et al. 2014. Anti-biofilm activity: a function of Klebsiella pneumoniae capsular polysaccharide. PLoS One 9: e99995.   DOI
22 Baig MH, Shakil S, Khan AU. 2012. Homology modeling and docking study of recent SHV type ${\beta}$-lactamses with traditional and novel inhibitors: an in silico approach to combat problem of multiple drug resistance in various infections. Med. Chem. Res. 21: 2229-2237.   DOI
23 Solano C, Echeverz M, Lasa I. 2014. Biofilm dispersion and quorum sensing. Curr. Opin. Microbiol. 18: 96-104.   DOI
24 Nadell CD, Xavier JB, Levin SA, Foster KR. 2008. The evolution of quorum sensing in bacterial biofilms. PLoS Biol. 6: e14.   DOI
25 Balestrino D, Haagensen JA, Rich C, Forestier C. 2005. Characterization of type 2 quorum sensing in Klebsiella pneumoniae and relationship with biofilm formation. J. Bacteriol. 187: 2870-2880.   DOI
26 De Araujo C, Balestrino D, Roth L, Charbonnel N, Forestier C. 2010. Quorum sensing affects biofilm formation through lipopolysaccharide synthesis in Klebsiella pneumoniae. Res. Microbiol. 161: 595-603.   DOI
27 Holetz FB, Pessini GL, Sanches NR, Cortez DA, Nakamura CV, Filho BP. 2002. Screening of some plants used in the Brazilian folk medicine for the treatment of infectious diseases. Mem. Inst. Oswaldo Cruz 97: 1027-1031.   DOI
28 Pereira J, Bergamo D, Pereira J, Franca Sde C, Pietro R, Silva-Sousa Y. 2005. Antimicrobial activity of Arctium lappa constituents against microorganisms commonly found in endodontic infections. Braz. Dent. J. 16: 192-196.   DOI
29 Lou Z, Wang H, Zhu S, Ma C, Wang Z. 2011. Antibacterial activity and mechanism of action of chlorogenic acid. J. Food Sci. 76: M398-403.   DOI
30 Murphy CN, Clegg S. 2012. Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation. Future Microbiol. 7: 991-1002.   DOI
31 Paterson DL, Hujer KM, Hujer AM, Yeiser B, Bonomo MD, Rice LB, et al. 2003. Extended-spectrum ${\beta}$-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHVand CTX-M-type ${\beta}$-lactamases. Antimicrob. Agents Chemother. 47: 3554-3560.   DOI
32 Balestrino D, Ghigo JM, Charbonnel N, Haagensen JA, Forestier C. 2008. The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides. Environ. Microbiol. 10: 685-701.   DOI
33 Lewis K. 2001. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45: 999-1007.   DOI
34 Romero L, Lopez L, Rodriguez-Bano J, Ramon Hernandez J, Martinez-Martinez L, Pascual A. 2005. Long-term study of the frequency of Escherichia coli and Klebsiella pneumoniae isolates producing extended-spectrum beta-lactamases. Clin. Microbiol. Infect. 11: 625-631.   DOI
35 Li Z, Jiang HD. 2009. The effect of biofilms on the production of beta-lactamases in Pseudomonas aeruginosa. Zhonghua Jie He He Hu Xi Za Zhi 32: 613-616.
36 Heydari S, Eftekhar F. 2015. Biofilm formation and ${\beta}$-lactamase production in burn isolates of Pseudomonas aeruginosa. Jundishapur J. Microbiol. 8: e15514.
37 Rajasekharan SK, Ramesh S. 2016. Inhibitory effect of quercetin on ${\beta}$-lactam-resistant urinary tract pathogens. Minerva Biotecnol. 28: 228-232.
38 Hennequin C, Forestier C. 2007. Influence of capsule and extended-spectrum beta-lactamases encoding plasmids upon Klebsiella pneumoniae adhesion. Res. Microbiol. 158: 339-347.   DOI
39 Karunanidhi A, Thomas R, van Belkum A, Neela V. 2013. In vitro antibacterial and antibiofilm activities of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia including the trimethoprim/sulfamethoxazole resistant strain. Biomed. Res. Int. 2013: 392058.
40 Luis A, Silva F, Sousa S, Duarte AP, Domingues F. 2014. Antistaphylococcal and biofilm inhibitory activities of gallic, caffeic, and chlorogenic acids. Biofouling 30: 69-79.   DOI