• Title/Summary/Keyword: tree search algorithm

Search Result 250, Processing Time 0.024 seconds

An Improvement Video Search Method for VP-Tree by using a Trigonometric Inequality

  • Lee, Samuel Sangkon;Shishibori, Masami;Han, Chia Y.
    • Journal of Information Processing Systems
    • /
    • v.9 no.2
    • /
    • pp.315-332
    • /
    • 2013
  • This paper presents an approach for improving the use of VP-tree in video indexing and searching. A vantage-point tree or VP-tree is one of the metric space-based indexing methods used in multimedia database searches and data retrieval. Instead of relying on the Euclidean distance as a measure of search space, the proposed approach focuses on the trigonometric inequality for compressing the search range, which thus, improves the search performance. A test result of using 10,000 video files shows that this method reduced the search time by 5-12%, as compared to the existing method that uses the AESA algorithm.

Implementation of Connected-Digit Recognition System Using Tree Structured Lexicon Model (트리 구조 어휘 사전을 이용한 연결 숫자음 인식 시스템의 구현)

  • Yun Young-Sun;Chae Yi-Geun
    • MALSORI
    • /
    • no.50
    • /
    • pp.123-137
    • /
    • 2004
  • In this paper, we consider the implementation of connected digit recognition system using tree structured lexicon model. To implement efficiently the fixed or variable length digit recognition system, finite state network (FSN) is required. We merge the word network algorithm that implements the FSN with lexical tree search algorithm that is used for general speech recognition system for fast search and large vocabulary systems. To find the efficient modeling of digit recognition system, we investigate some performance changes when the lexical tree search is applied.

  • PDF

Restoration of Distribution System with Distributed Energy Resources using Level-based Candidate Search

  • Kim, Dong-Eok;Cho, Namhun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.2
    • /
    • pp.637-647
    • /
    • 2018
  • In this paper, we propose a method to search candidates of network reconfiguration to restore distribution system with distributed energy resources using a level-based tree search algorithm. First, we introduce a method of expressing distribution network with distributed energy resources for fault restoration, and to represent the distribution network into a simplified graph. Second, we explain the tree search algorithm, and introduce a method of performing the tree search on the basis of search levels, which we call a level-based tree search in this paper. Then, we propose a candidate search method for fault restoration, and explain it using an example. Finally, we verify the proposed method using computer simulations.

Sparse Signal Recovery via Tree Search Matching Pursuit

  • Lee, Jaeseok;Choi, Jun Won;Shim, Byonghyo
    • Journal of Communications and Networks
    • /
    • v.18 no.5
    • /
    • pp.699-712
    • /
    • 2016
  • Recently, greedy algorithm has received much attention as a cost-effective means to reconstruct the sparse signals from compressed measurements. Much of previous work has focused on the investigation of a single candidate to identify the support (index set of nonzero elements) of the sparse signals. Well-known drawback of the greedy approach is that the chosen candidate is often not the optimal solution due to the myopic decision in each iteration. In this paper, we propose a tree search based sparse signal recovery algorithm referred to as the tree search matching pursuit (TSMP). Two key ingredients of the proposed TSMP algorithm to control the computational complexity are the pre-selection to put a restriction on columns of the sensing matrix to be investigated and the tree pruning to eliminate unpromising paths from the search tree. In numerical simulations of Internet of Things (IoT) environments, it is shown that TSMP outperforms conventional schemes by a large margin.

An Expert System for Fault Restoration using Tree Search Strategies in Distribution System (트리탐색법을 이용한 사고복구 전문가시스템)

  • 김세호;최병윤;문영현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.3
    • /
    • pp.363-371
    • /
    • 1994
  • This thesis investigates an expert system(ES) to propose fault restoration plan by utilizing tree search strategies. In order to cope with an extensive amount of data and frequent breaker switching operations in distribution systems, the database of system configuration is constructed by using binary trees. This remarkably enhances the efficiency of search algorithm and makes the proposed ES easily adaptable to system changes due to switching operations. The rule-base is established to fully utilize the meris of tree-structured database. The inferring strategy is developed mainly based on the best-first search algorithm to increase computation efficiency. The proposed ES has been implemented to efficiently deal with large distribution systems by reducing computational burden remarkably compared with the conventional ES's.

  • PDF

A New Link-Based Single Tree Building Algorithm for Shortest Path Searching in an Urban Road Transportation Network

  • Suhng, Byung Munn;Lee, Wangheon
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.4
    • /
    • pp.889-898
    • /
    • 2013
  • The shortest-path searching algorithm must not only find a global solution to the destination, but also solve a turn penalty problem (TPP) in an urban road transportation network (URTN). Although the Dijkstra algorithm (DA) as a representative node-based algorithm secures a global solution to the shortest path search (SPS) in the URTN by visiting all the possible paths to the destination, the DA does not solve the TPP and the slow execution speed problem (SEP) because it must search for the temporary minimum cost node. Potts and Oliver solved the TPP by modifying the visiting unit from a node to the link type of a tree-building algorithm like the DA. The Multi Tree Building Algorithm (MTBA), classified as a representative Link Based Algorithm (LBA), does not extricate the SEP because the MTBA must search many of the origin and destination links as well as the candidate links in order to find the SPS. In this paper, we propose a new Link-Based Single Tree Building Algorithm in order to reduce the SEP of the MTBA by applying the breaking rule to the LBA and also prove its usefulness by comparing the proposed with other algorithms such as the node-based DA and the link-based MTBA for the error rates and execution speeds.

Sparse Signal Recovery Using A Tree Search (트리검색 기법을 이용한 희소신호 복원기법)

  • Lee, Jaeseok;Shim, Byonghyo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39A no.12
    • /
    • pp.756-763
    • /
    • 2014
  • In this paper, we introduce a new sparse signal recovery algorithm referred to as the matching pursuit with greedy tree search (GTMP). The tree search in our proposed method is implemented to minimize the cost function to improve the recovery performance of sparse signals. In addition, a pruning strategy is employed to each node of the tree for efficient implementation. In our performance guarantee analysis, we provide the condition that ensures the exact identification of the nonzero locations. Through empirical simulations, we show that GTMP is effective for sparse signal reconstruction and outperforms conventional sparse recovery algorithms.

A Weapon Assignment Algorithm Using the Munkres Optimal Assignment Method (Munkres 최적할당 기법을 적용한 무기할당 알고리즘)

  • Kim, Ji-Eun;Shin, Jin-Hwa;Cho, Kil-Seok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-8
    • /
    • 2010
  • This paper presents global and optimal solution for weapon assignment problems using the Munkres assignment algorithm. We propose a new modeling method of weapon assignment problems concerning some constraints of weapon systems. In this paper, we compares the Munkres weapon assignment algorithm with two other algorithms employing a search tree model in terms of computational complexity and performance. One is an optimal algorithm using exhausted search and the other is a greedy algorithm which selects the first search result as a solution. The experiment results show that the Munkres weapon assignment algorithm has better performance and less computational complexity in comparison with the two other algorithms.

An Algorithm for Construction of Distribution Breadth-First Search Tree Using New Threshold Values (새로운 임계값을 이용한 분산 너비우선탐색 트리(Distributed Breadth-First Search Tree)의 구성 에 관한 알고리즘)

  • 송인섭;신재호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.16 no.5
    • /
    • pp.468-574
    • /
    • 1991
  • In construction of breadth-frist tree, the communication complexity can be reduced by efficent synchronization schemes based on several threshold values, We determine several new threshold values by considering the graph density represented as lognm, where n and m are the number of nodes and links., repectively. When thesethreshold values are used in the synchroization method for constructing distrbuted bradth-first search tree, we can obtain a more efficient algorithm in sparse graphs, and also, this algorithm has vthe same performance for communication complexity in dense graphs.

  • PDF

A Built-In Redundancy Analysis with a Minimized Binary Search Tree

  • Cho, Hyung-Jun;Kang, Woo-Heon;Kang, Sung-Ho
    • ETRI Journal
    • /
    • v.32 no.4
    • /
    • pp.638-641
    • /
    • 2010
  • With the growth of memory capacity and density, memory testing and repair with the goal of yield improvement have become more important. Therefore, the development of high efficiency redundancy analysis algorithms is essential to improve yield rate. In this letter, we propose an improved built-in redundancy analysis (BIRA) algorithm with a minimized binary search tree made by simple calculations. The tree is constructed until finding a solution from the most probable branch. This greatly reduces the search spaces for a solution. The proposed BIRA algorithm results in 100% repair efficiency and fast redundancy analysis.