• Title/Summary/Keyword: tree

Search Result 13,529, Processing Time 0.049 seconds

The study on the Image Evaluation of a Preserved Tree as Growth Environment - Focused on the Zelkova serrata in Yesangun - (생육환경에 따른 보호수 이미지 평가 - 예산군 느티나무를 중심으로 -)

  • Son, Jin-Kwan;Shin, Ji-Hoon;Ann, Phil-Gyun;Kang, Bang-Hun
    • Journal of Korean Society of Rural Planning
    • /
    • v.17 no.2
    • /
    • pp.33-41
    • /
    • 2011
  • To evaluate the value of a preserved tree as rural landscape resource, the growth environment and health condition was investigated, and the image evaluation was implemented on land~ape architectural major undergraduate students for zelkova trees in Yesan-gun. The image evaluation results of zelkova trees were as followings; 1) Typical image of preserved tree examined by Semantic Differential Scale were 'Old', 'Big', and 'Good'. 2) The 'big' image of zelkova tree and the height of tree, the width of tree crown, the breast girth of tree, the root girth of tree, the external formation of tree, and the health of tree bark is mutually related. Especially, the correlation between the 'big' and the external formation and the width of tree crown is high. 3) Typical image of preserved tree examined by Likert Scale were 'Natural', 'Green', 'Peaceful', and 'Rural'. 4) The preservation necessity for preserved tree was highly related with the state of ground, and the management necessity for preserved tree was highly related with contamination level and the state of ground. The appropriate management plan for preserved tree are proposed to improve the quality of rural landscape(basis of these results).

Ensemble of Fuzzy Decision Tree for Efficient Indoor Space Recognition

  • Kim, Kisang;Choi, Hyung-Il
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.4
    • /
    • pp.33-39
    • /
    • 2017
  • In this paper, we expand the process of classification to an ensemble of fuzzy decision tree. For indoor space recognition, many research use Boosted Tree, consists of Adaboost and decision tree. The Boosted Tree extracts an optimal decision tree in stages. On each stage, Boosted Tree extracts the good decision tree by minimizing the weighted error of classification. This decision tree performs a hard decision. In most case, hard decision offer some error when they classify nearby a dividing point. Therefore, We suggest an ensemble of fuzzy decision tree, which offer some flexibility to the Boosted Tree algorithm as well as a high performance. In experimental results, we evaluate that the accuracy of suggested methods improved about 13% than the traditional one.

Tree aging observation of XLPE by image processing (화상처리에 의한 XLPE의 트리열화관측)

  • 임장섭;김태성;길촌승
    • Electrical & Electronic Materials
    • /
    • v.8 no.5
    • /
    • pp.551-557
    • /
    • 1995
  • For the observation of treeing, a visual measurement with an optical microscope has been used to explain breakdown mechanism in high-voltage systems. The conventional directed visual method of tree aging observation is difficult to measure in short time processing, and it is impossible to analyze on tree degradation area, progressed direction, tree pattern, etc. By using an image processing technique, the tree features which appear immediately after the tree initiation as well as changes in the configuration of the tree can be easily measured and observed than using the conventional visual methods. In this paper, we have developed a tree observating system by using image processing for tree growth, degradation area and other treeing progress. As an experimental result, it can be concluded that the image processing method is a more effective alternative than directed visual observation method. As a matter of fact, it is possible to record the image of tree propagation immediately after its first appearance and explain the characteristics of tree growth froth the computer processing image.

  • PDF

Optimizing Both Cache and Disk Performance of R-Trees (R-Tree를 위한 캐시와 디스크 성능 최적화)

  • 박명선;이석호
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.749-751
    • /
    • 2003
  • R-Tree는 일반적으로 트리 노드의 크기를 디스크 페이지의 크기와 같게 함으로써 I/O 성능에 최적이 되도록 구현한다. 최근에는 CPU 캐시 성능을 최적화하는 R-Tree의 변형이 개발되었다. 이는 노드의 크기를 캐시 라인 크기의 수 배로 하고 MBR에 저장되는 키를 압축하여 노드 하나에 더 많은 엔트리를 저장함으로써 가능하였다. 그러나, 디스크 최적 R-Tree와 CPU 캐시 최적 R-Tree의 노드 크기 사이에는 수십-수백 바이트와 수-수십 킬로바이트라는 큰 차이가 있으므로, 디스크 최적 R-Tree는 캐시 성능이 나쁘고, CPU 캐시 최적 H-Tree는 나쁜 디스크 성능을 보이는 문제점을 가지고 있다. 이 논문에서는 CPU 캐시와 디스크에 모두 최적인 R-Tree. TR-Tree를 제안한다. 먼저, 디스크 페이지 안에 들어가는 페이지 내부 트리의 높이와 단말, 중간 노드의 크기를 결정하는 방법을 제시한다. 그리고, 이틀 이용하여 TR-Tree의 검색 연산에 필요한 캐시 미스 수를 최소화였고. TR-Tree의 검색 성능을 최적화하였다. 또한, 디스크 I/O 성능을 최적화하기 위해 메모리 노드들을 디스크 페이지에 잘 맞게 배치하였다. 여기에서 구현한 TR-Tree는 디스크 최적 R-Tree보다 삽입 연산에서 6에서 28배 정도 빨랐으며, 검색 연산에서는 1.28배에서 2배의 성능 향상을 보였다.

  • PDF

A Hash based R-Tree for Fast Search of Mass Spatial Data (대용량 공간 데이터의 빠른 검색을 위한 해시 기반 R-Tree)

  • Kang, Hong-Koo;Kim, Joung-Joon;Shin, In-Su;Han, Ki-Joon
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.82-89
    • /
    • 2008
  • 최근, GIS 분야에서 RFID와 GPS 센서 같은 위치 및 공간 데이타를 포함하는 다양한 GeoSensor의 활용으로 수집되는 공간 데이타가 크게 증가하면서, 대용량 공간 데이타의 빠른 처리를 위한 공간 인덱스의 중요성이 높아지고 있다. 특히, 대표적인 공간 인덱스인 R-Tree를 기반으로 검색 성능을 높이기 위한 연구가 활발히 진행되고 있다. 그러나, 기존 연구는 R-Tree에서 노드의 MBR 간의 겹침이나 트리 높이를 어느 정도 줄임으로써 다소 검색 성능을 향상시켰지만, 트리 검색에서 발생하는 불필요한 노드 접근 비용 문제를 효율적으로 해결하지 못하고 있다. 본 논문에서는 이러한 문제를 해결하고 R-Tree에서 대용량 공간 데이타의 빠른 검색을 제공하는 인덱스인 HR-Tree(Hash based R-Tree)를 제시한다. HR-Tree는 트리 검색 없이 R-Tree 리프 노드를 직접 접근할 수 있는 해시 테이블을 이용함으로써 R-Tree의 검색 성능을 높인다. 해시 테이블은 데이타 영역을 차원에 따라 반복적으로 분할한 Partition과 대응되는 R-Tree 리프 노드의 MBR과 포인터들로 구성된다. 각 Partition은 생성 과정에서 고유의 식별 코드를 갖기 때문에 Partition 코드가 주어지면 해시 테이블에서 해당 레코드를 쉽게 접근할 수 있다. 또한, HR-Tree는 R-Tree구조의 변경없이 다양한 R-Tree 변형 구조에 쉽게 적용할 수 있는 장점이 있다. 마지막으로 실험을 통하여 HR-Tree의 우수성을 입증하였다.

  • PDF

HD-Tree: High performance Lock-Free Nearest Neighbor Search KD-Tree (HD-Tree: 고성능 Lock-Free NNS KD-Tree)

  • Lee, Sang-gi;Jung, NaiHoon
    • Journal of Korea Game Society
    • /
    • v.20 no.5
    • /
    • pp.53-64
    • /
    • 2020
  • Supporting NNS method in KD-Tree algorithm is essential in multidimensional data applications. In this paper, we propose HD-Tree, a high-performance Lock-Free KD-Tree that supports NNS in situations where reads and writes occurs concurrently. HD-Tree reduced the number of synchronization nodes used in NNS and requires less atomic operations during Lock-Free method execution. Comparing with existing algorithms, in a multi-core system with 8 core 16 thread, HD-Tree's performance has improved up to 95% on NNS and 15% on modifying in oversubscription situation.

Prefetch R-tree: A Disk and Cache Optimized Multidimensional Index Structure (Prefetch R-tree: 디스크와 CPU 캐시에 최적화된 다차원 색인 구조)

  • Park Myung-Sun
    • The KIPS Transactions:PartD
    • /
    • v.13D no.4 s.107
    • /
    • pp.463-476
    • /
    • 2006
  • R-trees have been traditionally optimized for the I/O performance with the disk page as the tree node. Recently, researchers have proposed cache-conscious variations of R-trees optimized for the CPU cache performance in main memory environments, where the node size is several cache lines wide and more entries are packed in a node by compressing MBR keys. However, because there is a big difference between the node sizes of two types of R-trees, disk-optimized R-trees show poor cache performance while cache-optimized R-trees exhibit poor disk performance. In this paper, we propose a cache and disk optimized R-tree, called the PR-tree (Prefetching R-tree). For the cache performance, the node size of the PR-tree is wider than a cache line, and the prefetch instruction is used to reduce the number of cache misses. For the I/O performance, the nodes of the PR-tree are fitted into one disk page. We represent the detailed analysis of cache misses for range queries, and enumerate all the reasonable in-page leaf and nonleaf node sizes, and heights of in-page trees to figure out tree parameters for best cache and I/O performance. The PR-tree that we propose achieves better cache performance than the disk-optimized R-tree: a factor of 3.5-15.1 improvement for one-by-one insertions, 6.5-15.1 improvement for deletions, 1.3-1.9 improvement for range queries, and 2.7-9.7 improvement for k-nearest neighbor queries. All experimental results do not show notable declines of the I/O performance.

Parallel Range Query Processing with R-tree on Multi-GPUs (다중 GPU를 이용한 R-tree의 병렬 범위 질의 처리 기법)

  • Ryu, Hongsu;Kim, Mincheol;Choi, Wonik
    • Journal of KIISE
    • /
    • v.42 no.4
    • /
    • pp.522-529
    • /
    • 2015
  • Ever since the R-tree was proposed to index multi-dimensional data, many efforts have been made to improve its query performances. One common trend to improve query performance is to parallelize query processing with the use of multi-core architectures. To this end, a GPU-base R-tree has been recently proposed. However, even though a GPU-based R-tree can exhibit an improvement in query performance, it is limited in its ability to handle large volumes of data because GPUs have limited physical memory. To address this problem, we propose MGR-tree (Multi-GPU R-tree), which can manage large volumes of data by dividing nodes into multiple GPUs. Our experiments show that MGR-tree is up to 9.1 times faster than a sequential search on a GPU and up to 1.6 times faster than a conventional GPU-based R-tree.

Single Image-Based 3D Tree and Growth Models Reconstruction

  • Kim, Jaehwan;Jeong, Il-Kwon
    • ETRI Journal
    • /
    • v.36 no.3
    • /
    • pp.450-459
    • /
    • 2014
  • In this paper, we present a new, easy-to-generate system that is capable of creating virtual 3D tree models and simulating a variety of growth processes of a tree from a single, real tree image. We not only construct various tree models with the same trunk through our proposed digital image matting method and skeleton-based abstraction of branches, but we also animate the visual growth of the constructed 3D tree model through usage of the branch age information combined with a scaling factor. To control the simulation of a tree growth process, we consider tree-growing attributes, such as branching orders, branch width, tree size, and branch self-bending effect, at the same time. Other invisible branches and leaves are automatically attached to the tree by employing parametric branch libraries under the conventional procedural assumption of structure having a local self-similarity. Simulations with a real image confirm that our system makes it possible to achieve realistic tree models and growth processes with ease.

Reliability Assessment of Railway Power System by using Tree Architecture (Tree 구조를 이용한 전철급전시스템의 신뢰도 평가)

  • Cha, Jun-Min;Ku, Bon-Hui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • As catenary supply electric power directly to the railway system, it is very important to prevent an accident of a catenary for appropriate train operation. This paper proposed the assessment the outage data for "British Catenary Safety Analysis Report" and Korean data to compare the reliability of the railway system. The analyzed data were applied to Event Tree and Fault Tree algorithm to calculate the reliability indices of railway system. Event tree is created and gate results of fault tree analysis are used as the source of event tree probabilities. Fault tree represents the interaction of failures and basic events within a system. Event Tree and Fault Tree analysis result is helpful to assess the reliability to interpreted. The reliability indices can be used to determine the equipment to be replaced for the entire system reliability improvement.