• Title/Summary/Keyword: treatment wetland

Search Result 220, Processing Time 0.028 seconds

The Effect of Ecological Restoration and Water Purification of Ecological Fish-way and Floodplain Back Wetland Created as Sustainable Structured Wetland Biotope at Maeno Stream (매노천에서 생태적수질정화비오톱(SSB)으로 창출된 생태어도 및 홍수터 배후습지의 생태계 복원과 생태적 수질정화효과)

  • Byeon, Chan-Woo;Kim, Yong-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.6
    • /
    • pp.508-523
    • /
    • 2017
  • This study monitored the changes before and after restoration of ecological stream focusing on the places which are applied Sustainable Structured wetland Biotop (SSB) system and ecological Fish-way for restoration of Maeno stream. A total of 11 species and 191 individuals of fishes were founded out which were not verified inhabitation before restoration at SSB wetlands. Especially, it was could identified that micro habitat and healthy Fish-way was created because the restored target species, Microphysogobio yaluensis and Iksookimia koreensis were identified that habitation was monitored in SSB wetland. Amphibian have been restored to a number of Rana nigromaculata found in and around wetlands at the time of the third survey, which is highly active after restoration. Specified endangered species class 1 and natural monuments designated by the Ministry of Environment, Lutra lutra lutra, as a Mammalian, uses the wetlands and ecological Fish-way as habitat areas, and the his habitat is restored. In the case of Flora, vascular plants emerging in the survey area were increased to 7 and 13 species before restoration and 15 and 19 species directly after restoration, and 22 species and 33 species after restoration. Vegetation after restoration was found to be a basic producer of various ecosystems and a plant community that contributes to the purification of water quality such as Phragmites japonica communities. As the result of water quality monitoring, the average of treatment efficiencies were BOD 64.3%, T-N 47.2%, T-P 80.7%. Successful treatment of the nonpoint pullution source, which is a limiting factor to disturb the ecosystem, creatively restored the target species in the water quality class I, II.

Evaluation of urban pollutant washoff characteristics and treatment efficiency of a small constructed wetland

  • Reyes, Nash Jett DG.;Geronimo, Franz Kevin F.;Kim, Lee-Hyung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.412-412
    • /
    • 2019
  • Nature-based solutions (NBS) offer a wide variety of techniques that promote cost-efficient stormwater management practices. In particular, low impact development facilities utilize NBS principles to restore the ecosystem services in a highly-urbanized area. Despite the advancements in these technologies, several considerations should still be addressed to ensure optimum functionality and attainment of desired pollutant removal efficiency a LID facility. This study evaluated the mass flushing characteristics of pollutants in an urban catchment and the efficiency of a small constructed wetland (SCW) in treating urban stormwater runoff. 21 rainfall events from 2010 to 2018 were monitored to determine and quantify stormwater pollutants. The highest pollutant washoff was observed on rainfall depths ranging from 0.1mm to 10mm, whereas events with greater rainfall depths exhibited lower pollutant concentrations due to dilution effect. However, the SCW manifested lower pollutant-removal performance on rainfall depths exceeding 10mm due to the exceedance of the facility's design rainfall. This study is beneficial in assessing the dynamics of pollutant washoff and efficiency of LID facilities subjected under various external factors.

  • PDF

A study on ecological reprocessing and creation of biotope by reuse of treated waste water and nonpoint pollution source of stream (하수처리수와 하천 비점오염원을 이용한 생태적 재처리 효과와 생물 서식처 창출 방안 - 왕포천 생태적수질정화비오톱(Sustainable Structured wetland Biotop) 시스템 사례를 중심으로 -)

  • Byeon, ChanWoo;Lee, JongnChan
    • Journal of Wetlands Research
    • /
    • v.21 no.4
    • /
    • pp.374-383
    • /
    • 2019
  • The Wangpo stream located in the Buyeo-gun was a small stream with both low water quality and quantity due to the cultivated land and settlement area through the stream. In order to restore ecosystem, the Sustainable Structured wetland Biotop system was applied to treat 1,500 to 7,000 ㎥/d amount of effluent water pumped from the Buyeo sewage treatment plant facility as well as inflowed from nonpoint pollution source of Wangpo stream. As a result of continuous monitoring for 2 years from 2016 to 2018 after completing restorative construction, the average BOD5 as an index of organic pollution was 7.3 mg/L and the average effluent concentration became 2.1 mg/L, showing an improvement by 71.2%. The average inflow concentration of T-N was 7.953 mg/L and the average outflow concentration was 3.379 mg/L, showing 57.5% of improvement. The average inflow concentration of T-P was 0.177 mg/L and the average outflow concentration was 0.052 mg/L, showing about 70.7% improvement. The results of ecological monitoring after creating biotope by reuse of treated waste water and nonpoint pollution source of the Wangpo Stream are as follows. The plant taxa founded in water SSB(Sustainable Structured wetland Biotop) system of the Wangpo Stream was total 41 species in 21 families, showing a higher proportion of naturally introduced plant than that of artificially planted species. In case of other terrestrial animals, both amphibian and reptile group were confirmed as 3 species in 6 families, avian group was 25 species of 15 families, and mammal group observed 5 species in 5 families, respectively. All species have been created and enhanced through purified water inhabited in the SSB(Sustainable Structured wetland Biotop) system as a treatment wetland, eventually migrating to the Wangpo Stream.

Phosphorous Removal Rate of a Surface-Flow Treatment Wetland System Constructed on Floodplain During Its Initial Operating Stage (하천고수부지 수질정화 자유수면인공습지의 초기운영단계 인제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.251-254
    • /
    • 2003
  • Phosphorous removal rate and emergent plant growth were examined of a surface-flow constructed treatment wetland system, whose dimensions were 31 meter in length and 12 meter in width. The system was established on floodplain in the down reach of the Kwangju Stream in Korea in one and half months from May to June 2001. Cattails(Typha angustiflora) were transplanted in the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju Stream were funneled into it via a pipe by gravity flow and its effluent were discharged back into it. The stems of cattails grew from 45.2 cm in July 2001 up to 186 cm in September 2001 and the number of cattail stems per square meter increased from 22 in July 2001 to 53 in September 2001. The early establishment of cattails was good. Volume and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow averaged $40\;m^3/day$ and hydraulic retention time was about 1.5 days. The concentration of total phosphorous in influent and effluent was 0.85 mg/L, 0.41 mg/L, respectively. The average removal rate of total phosphorous in the system was about 52%. The retention efficiency was slightly lower, compared with that in surface-flow wetlands operating in North America, whose retention efficiency was reported to be about 57%. The lower abatement rate could result from the initial stage of the system and inclusion of two cold months into the six-month monitoring period. Root rhizosphere in wetland soils and litter-soil layers on bottoms were not properly developed. Increase of standing density of cattails within a few years will establish both root zones and substrates beneficial to the removal of phosphorous, which may lead to increase of the phosphorous retention rate. The system was submerged one time by heavy storm during the monitoring period. The inundation, however, scarcely disturb its environment.

Removal Mechanisms for Water Pollutant in Constructed Wetlands: Review Paper (인공습지에서 오염물질 제거기작 및 국내외 연구동향)

  • Ko, Dae-Hyun;Chung, Yun-Chul;Seo, Seong-Cheol
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.4
    • /
    • pp.379-392
    • /
    • 2010
  • In these days, constructed wetlands are applied in Korea for various purposes ; post-treatment of effluent in wastewater treatment, management of stormwater and restoration of aquatic ecosystems. However, the removal mechanisms for water pollutant in constructed wetlands are not clearly understood because they are affected by climate, influent characteristics and local constraints. Therefore, this paper is focused on the process that the pollutant, especially nitrogen and phosphorus, of the wetland is removed by. In this study, the main nitrogen removal is performed by nitrification/denitrification mechanism in the rhizosphere of constructed wetlands. And the majority of the phosphorus is removed by adsorption on the substrate of wetland. However the fate of phosphorus in wetlands can be diverse depending on the Oxidation Reduction Potential(ORP), adsorption/desorption, precipitation/dissolution, microbial effect, etc.

Determination of Application Rate of Composted Pig Manure for Wetland Rice (논토양에서 돈분톱밥퇴비 시용량 결정에 관한 연구)

  • Lee, Sang-Min;Ryu, In-Soo;Lee, Choon-Soo;Park, Yang-Ho;Um, Myung-Ho
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.2
    • /
    • pp.182-191
    • /
    • 1999
  • A study was conducted for the determination of application rate of pig-dung composted with sawdust (referred as pig manure hereafter) for wetland rice. The study involved the field experiments with the cultivation of rice under different rates of application of pig manure in combination of different rates of chemical fertilizers, in a wetland rice soil. The field experiment involved following treatments : (I) Without fertilizer, (II) Standard rate of chemical fertilizers based on soil testing($98-73-71kg\;ha^{-1}$ as $N-P_2O_5-K_2O$), (III) $2.1Mg\;ha^{-1}$ of pig manure $>+80-37kg\;ha^{-1}$ of $N- K_2O$ as chemical fertilizer(Less $N-P_2O_5-K_2O$ contained in the compost), (IV) $4.2Mg\;ha^{-1}$ of pig manure+ $62-3kg\;ha^{-1}$ of $N-K_2O$as chemical fertilizer(Less $N-P_2O_5-K_2O$ contained in the compost), (V) $10Mg\;ha^{-1}$ of pig manure+ Treatment(II), (VI) $20Mg\;ha^{-1}$ of pig manure +Treatment(II). Number of tillers in treatment (I) were higher than other treatments in tillering and panicle formation stage. After heading stage, treatments (V) and (VI) have higher number of tillers, but treatment (III) and (IV) have fewer number of tillers during all growing stage. Uptake of NPK in rice plants was higher in treatment (VI), but the efficiency of N, P and K was higher in treatment (I), (III) and (IV). The yield of unhulled rice were in order of tretments (VI)>(V)>(IV)>(II)>(III), although the difference was not statistically significant. Inorganic nitrogen, available P and exchangable K contents in soil were highest at tillering stage in all treatments and became low from panicle formation to harvest stage. Available P in soil was increased by the application of pig manure upto 20 cm depth. Exchangeable cation contents in 40 to 60 cm soil depth was much higher in treatment (VI) than in other treatments. Treatment (V) and (VI) showed much higher losses of N. $P_2O_5 $ and $K_2O$ than other treatment. Though treatment (VI) tended yield higher than in other treatments, showed lodging and occurrence of leaf and neck blast in this treatment. Yield of unhulled rice in treatment (IV) was not significant statistically and reduced nutritional losses. It is conclude that treatment (IV) seems to be the most reasonable one for the application of pig manure in combination of chemical fertilizers.

  • PDF

Evaluation of Treatment Efficiencies of Water Quality for 5 years in Constructed Wetland to Upper Region of Water Source (상수원 상류지역 인공습지의 5년간 수질 정화효율 평가)

  • Park, Jong Seok;Kim, Kang Seok;Kim, Yong Chan;Rhee, Kyoung Hoon
    • Journal of Wetlands Research
    • /
    • v.14 no.4
    • /
    • pp.479-488
    • /
    • 2012
  • This study evaluates treatment efficiencies of pollutants in Boknae bio-park constructed wetlands surrounding Juam Lake for 5 years from January 2006 to December 2010, in order to treat non-point pollutants effectively. The analysis of monthly treatment efficiency of pollutants shows that the scope of BOD is -19.11~37.72%, and of COD is 30.14~27.38%, thus the monthly deviation COD is relatively higher than BOD, and the scope of SS is -54.07~64.82%. Moreover, the analysis of seasonal treatment efficiency of pollutants shows that the treatment efficiency of TN is higher than 36.8% on average for 5 years in the spring and winter, and of TP relatively lower than other pollutants, however, the seasons don't make much difference to the treatment efficiency of TP.

Paddy Rice Culture Experiment Using Treated Sewage Effluent From Constructed Wetland (인공습지 오수처리수를 이용한 벼재배 실험)

  • 윤춘경;함종화;우선호;김민희
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.2
    • /
    • pp.94-104
    • /
    • 2001
  • A pilot study was performed at the experimental field of Konkuk University in Seoul, to examine the feasibility of the constructed wetland system for sewage and the effect of treated sewage irrigation on the paddy rice culture and its soil characteristics. The constructed wetland performed well, in that effluent concentrations of pollutants were significantly lower than concentrations of the influent. Median removal efficiencies of BOD$_{5}$ was about 78% and slightly lower during winter. Removal efficiencies form TN and TP were approximately 48 and 21%, respectively, and relatively less effective than that of BOD$_{5}$. Irrigation of treated sewage to paddy rice culture did not affect adversely in both growth and yield of rice. Instead, plots of treated sewage irrigation showed up to 50% more yield in average than the control plot. It implies that treated sewage irrigation might be beneficial to rice culture rather than detrimental as long as it is treated adequately and used properly. Soil was sampled and analyzed before transplanting and after harvesting. pH was slightly increased due to irrigation water, but it may not be concerned as long as the treated sewage is within the normal range. EC was increased in first year but decreased in second year, therefore salts accumulation in the soil could be less concerned. OM and CES was slightly increased, which might be beneficial on growing plants. TN did not show apparent pattern. Available phosphorus was decreased after rice culture, but the quantity of phosphorus(TP-available phosphorus) was rather increased which implies that excessive phosphorus supply may result in phosphorus accumulation in the soil. Overall, the constructed wetland was thought to be an effective sewage treatment alternative, and treated sewage could be reused as a supplemental source of irrigation water for paddy rice culture without causing adverse effect as long as it is treated adequately and used properly. For full-scale application, further investigation should be followed on environmental risk assessment, tolerable water quality, and fraction of supplemental irrigation.ion.

  • PDF

A Design for Ecological and Environmental Restoration of a Dispersal Detention System - a Case of Sustainable Structured wetland Biotop (SSB) System Applied to Ecological and Environmental Detention in the Housing District of Sinjeong 3-jigu - (분산형 저류지 생태환경복원 설계 - 신정3지구 생태환경저류지에 적용된 생태적수질정화비오톱(SSB)시스템을 중심으로 -)

  • Byeon, Chan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.181-191
    • /
    • 2013
  • The design process of ecological and environmental detention system located in the housing district of Sinjeong 3-jigu in Seoul are as follows. At stage one, a new dispersal detention was created in the neighborhood park located near the originally planned detention. From this, the amount of storage of this dispersal detention system was enlarged from $28,337m^3/d$, the initial storage amount, to $33,606m^3/d$ as the post storage amount, responsible to the amount of rainfall which happens every 100 years. In particular, the SSB (Sustainable Structured wetland Biotop) system, which was the New Excellent Technology verified by the Ministry of Environment (No. 258) was applied to enhance ecological functioning and water quality with the detention as a constructed wetland. At stage two, the treatment plans for non-point pollutant source occurred at the initial period of rain, flowing into the detention system were built for purifying the water of the retention pond at the base of the detentions, and the water-circulation system was designed at the dispersal detentions on the period of regular rainfalls. The non-point pollutant source flowing into detention site was calculated as $11,699m^3/d$ flowing down from seven small watersheds, which occurred at the initial period of rain. In particular the SSB systems improved the average efficiency of the water processing performance to BOD 60%, SS 90%, T-N 30%, T-P 60%. At stage three, the ecological network and biological diversity were strongly considered so that it brought the residents with amenity places. In particular, the dispersal detentions were successfully designed to restore the ecological habitat of endangered plant and animal species such as narrow-mouthed.

Integrated Watershed Modeling Under Uncertainty (불확실성을 고려한 통합유역모델링)

  • Ham, Jong-Hwa;Yoon, Chun-Gyoung;Loucks, Daniel P.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.4
    • /
    • pp.13-22
    • /
    • 2007
  • The uncertainty in water quality model predictions is inevitably high due to natural stochasticity, model uncertainty, and parameter uncertainty. An integrated modeling system under uncertainty was described and demonstrated for use in watershed management and receiving-water quality prediction. A watershed model (HSPF), a receiving water quality model (WASP), and a wetland model (NPS-WET) were incorporated into an integrated modeling system (modified-BASINS) and applied to the Hwaseong Reservoir watershed. Reservoir water quality was predicted using the calibrated integrated modeling system, and the deterministic integrated modeling output was useful for estimating mean water quality given future watershed conditions and assessing the spatial distribution of pollutant loads. A Monte Carlo simulation was used to investigate the effect of various uncertainties on output prediction. Without pollution control measures in the watershed, the concentrations of total nitrogen (T-N) and total phosphorous (T-P) in the Hwaseong Reservoir, considering uncertainty, would be less than about 4.8 and 0.26 mg 4.8 and 0.26 mg $L^{-1}$, respectively, with 95% confidence. The effects of two watershed management practices, a wastewater treatment plant (WWTP) and a constructed wetland (WETLAND), were evaluated. The combined scenario (WWTP + WETLAND) was the most effective at improving reservoir water quality, bringing concentrations of T-N and T-P in the Hwaseong Reservoir to less than 3.54 and 0.15 mg ${L^{-1}$, 26.7 and 42.9% improvements, respectively, with 95% confidence. Overall, the Monte Carlo simulation in the integrated modeling system was practical for estimating uncertainty and reliable in water quality prediction. The approach described here may allow decisions to be made based on probability and level of risk, and its application is recommended.