• Title/Summary/Keyword: treatment related death

Search Result 594, Processing Time 0.028 seconds

Lenalidomide in Treating Patients with Castration-Resistant Prostate Cancer

  • Xing, Dong-Liang;Song, Dong-Kui;Zhang, Li-Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.9
    • /
    • pp.3969-3972
    • /
    • 2015
  • Background: This analysis was conducted to evaluate the efficacy and safety of lenalidomide based regimen in treating patients with castration-resistant prostate cancer. Materials and Methods: Clinical studies evaluating the efficacy and safety of lenalidomide based regimens on response and safety for patients with castration-resistant prostate cancer were identified using a predefined search strategy. A pooled response rate (rate of PSA level decline of ${\geq}50%$) to treatment was calculated. Results: In lenalidomide based regimen, 3 clinical studies which including 98 patients with castration-resistant prostate cancer were considered eligible for inclusion. These lenalidomide based regimens included cisplatin, doxorubicin, or GM-CSF. Pooled analysis suggested that, in all patients, the pooled PSA level decline of ${\geq}50%$ was 13.3% (13/98) in lenalidomide based regimens. Fatigue, nausea and vomitting were the main side effects. No grade III or IV renal or liver toxicity were observed. No treatment related death occurred in patients with lenalidomide based regimens. Conclusions: This evidence based analysis suggests that lenalidomide based regimens are associated with mild response rate and acceptable toxicities for treating patients with castration-resistant prostate cancer.

Preparedness of Siddha system of medicine in practitioner perspective during a pandemic outbreak with special reference to COVID-19

  • Rajalakshmi, S.;Samraj, K.;Sathiyarajeswaran, P.;Kanagavalli, K.
    • CELLMED
    • /
    • v.10 no.4
    • /
    • pp.29.1-29.6
    • /
    • 2020
  • COVID-19 (Corona Virus Disease-2019) is an infectious respiratory disease caused by the most recently discovered coronavirus, SARS-CoV-2 (Severe Acute Respiratory Syndrome Corona virus-2). This new viral disease was unknown before the outbreak began in Wuhan, China, in December 2019. As of November 16th 2020, it affects about 54.3 million populations, death troll increased to 1.32 million cases in worldwide. Whereas in India 8.85 cases are infected with COVID-19, of which 1, 30, 112 cases were died. Till now there has been no specific anti-virus drug or vaccines are available for the treatment of this disease, the supportive care and non-specific treatment to the symptoms of the patient are the only options in Biomedicine, the entire world turns its attention towards alternative medicine or Traditional medicine. Siddha medicine is one of the primordial systems of medicine practiced in the southern part of India, it dealt a lot about pandemic, and its management. This review provides an insight into Pandemic in Siddha system and its management in both ancient history and modern history, National and state level Government policies related to current pandemic, World Health Organization (WHO) guidelines on usage of unproven drug during infectious disease outbreak, Preparedness of Siddha system during a pandemic outbreak Challenges and Recommendations.

Effect of the Water Extract of Albizzia julibrissin on Cell Cycle Progression in the Human Leukemic Jurkat Cells (백혈병세포주 Jurkat의 세포주기 억제에 미치는 합환피(Albizzia julibrissin) 물 추출물의 효과)

  • Hwang, Sang-Gu;Lee, Hyung-Chul;Kim, Dae-Geun;An, Won-Gun;Jeon, Byung-Hun
    • Korean Journal of Pharmacognosy
    • /
    • v.33 no.1 s.128
    • /
    • pp.29-34
    • /
    • 2002
  • Albizzia julibrissin belonging to the family Leguminosae has been used for the treatment of contusion, sore throat, amnesia, and insomnia in Oriental traditional medicine. The water extract of A. julibrissin induced apoptosis in Jurkat T-acute lymphoblastic leukemia (ALL) cells as measured by cell morphology. The capability of this herb medicine to induce apoptosis was associated with proteolytic cleavage of specific target protein such as beta-catenin protein suggesting the possible involvement of caspases. The purpose of the present study is also to investigate the effect of A. julibrissin on cell cycle progression. Our results showed that GI checkpoint related gene products (cyclin D1, cyclin dependent kinase 4, retinoblastoma, E2F1) were decreased in their protein levels in a dose-dependent manners after treatment of the extract. These results indicate that the increase of apoptotic cell death by A. julibrissin may be due to the inhibition of cell cycle progression in wild type p53-lacking Jurkat cells.

Influence of Long-term Supplementation with Korean Red Ginseng on in vivo Antioxidant Capacities in Rats

  • Lim, Heung-Bin;Lee, Dong-Wook;Lee, Jun-Soo
    • Food Science and Biotechnology
    • /
    • v.18 no.1
    • /
    • pp.234-238
    • /
    • 2009
  • Effects of ginseng on in vivo antioxidant capacities with age were studied in rats. All rats were reared in the conventional system. Ginseng-treated rats were supplied with ginseng water extracts (25 mg/kg/day) continuously from 6 weeks of age to spontaneous death. None of the rats showed any discernible adverse effects of treatment with ginseng-containing water. There was no significant difference in body weight (BW) gains with age between treated and control groups. However, ginseng extracts did cause a decrease in the level of serum low density lipoprotein (LDL)-cholesterol, glucose, and thiobarbituric acid reactive substances (TBARS) in the treated rats. The activities of superoxide dismutase (SOD), catalase, and glutathione peroxidase in liver cytosol decreased with age in the control group. However, these enzyme activities were well maintained in the ginseng-treated rats and, especially, catalase and glutathione peroxidase activities were consistently higher than in control rats. The levels of total sulfhydryl group (T-SH) and glutathione reductase (GR) were unchanged, and glutathione-s-transferase (GST) activity gradually decreased with age in both groups. There were no differences in T-SH, GR, or GST between the control and treatment groups. These results indicate that long-term administration of ginseng retards age-related deterioration in some biochemical parameters such as cholesterol, glucose, and lactate dehydrogenase in serum and it has an enhancing effect on antioxidant capacity in the liver.

High-concentration Epigallocatechin Gallate Treatment Causes Endoplasmic Reticulum Stress-mediated Cell Death in HepG2 Cells

  • Ahn, Joon-Ik;Jeong, Kyoung-Ji;Ko, Moon-Jeong;Shin, Hee-Jung;Chung, Hye-Joo;Jeong, Ho-Sang
    • Genomics & Informatics
    • /
    • v.7 no.2
    • /
    • pp.97-106
    • /
    • 2009
  • Epigallocatechin gallate (EGCG), a well-known antioxidant molecule, has been reported to cause hepatotoxicity when used in excess. However, the mechanism underlying EGCG-induced hepatotoxicity is still unclear. To better understand the mode of action of EGCG-induced hepatotoxicity, we examined the effect of EGCG on human hepatic gene expression in HepG2 cells using microarrays. Analyses of microarray data revealed more than 1300 differentially expressed genes with a variety of biological processes. Upregulated genes showed a primary involvement with protein-related biological processes, such as protein synthesis, protein modification, and protein trafficking, while downregulated genes demonstrated a strong association with lipid transport. Genes involved in cellular stress responses were highly upregulated by EGCG treatment, in particular genes involved in endoplasmic reticulum (ER) stress, such as GADD153, GADD34, and ATF3. In addition, changes in genes responsible for cholesterol synthesis and lipid transport were also observed, which explains the high accumulation of EGCG-induced lipids. We also identified other regulatory genes that might aid in clarifying the molecular mechanism underlying EGCG-induced hepatotoxicity.

General Disaster Scattered Action Research -Focusing On the Construction Site Accident Cases- (일반재해 발생시 산재처리 방안연구 -건설현장 사고사례를 중심으로-)

  • Yoo, Yong Tae;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.17 no.4
    • /
    • pp.23-33
    • /
    • 2015
  • Recently, the Ministry of Employment and Labor Management is a trend to strengthen all men death rate than the accident rate. Points reduction in the accident rate change orders related to credit rating score to +2 points in his plans as part of +1 point. In addition, according to the fancy linger RISK treatment in the event of a disaster site and fiction treatment to achieve accident-free during processing the scene interspersed with equity issues have been raised. In general disaster for the problem in the first two cases occurs when abnormal process according to the disaster site manager positions dismissal policy, each division headquarters itself, interspersed disasters performance compared to processing in accordance with the refrain, processing expenses in accordance with the composition of untreated industrial accident, costs and burdens partners FTC, there is a possibility that the issues raised, such as the Ministry of Employment and Labor. In response to domestic social practices focused on the construction site practices and prevention measures should be evaluated with respect to what.

Enhanced Sensitivity to Proteasome Inhibitor Bortezomib in Nrf2 Knockdown Ovarian Cancer Cells (Nrf2 영구 넉다운 난소암 세포주의 Proteasome 저해 항암제 Bortezomib에 대한 감수성 증가)

  • Lee, Sang-Hwan;Choi, Bo-Hyun;Kwak, Mi-Kyoung
    • YAKHAK HOEJI
    • /
    • v.55 no.6
    • /
    • pp.466-472
    • /
    • 2011
  • NF-E2-related factor 2 (Nrf2), a master regulator of antioxidant genes in animals, has been associated with the resistance of cancer cells to several cytotoxic chemotherapeutics. Bortezomib, a reversible inhibitor of the 26S proteasome, is a novel class anti-cancer therapeutics approved for the treatment of refractory multiple myeloma. However, the molecular mechanism of drug-resistance remains elusive. In the present study, bortezomib sensitivity has been investigated in Nrf2 knockdown ovarian cancer cells. When Nrf2 expression is stably repressed using interfering RNA expression, bortezomib-induced apoptosis and cell death were significantly enhanced compared to nonspecific RNA control cells. Knockdown cells showed elevated expression in the catalytic subunit PSMB5, PSMB6, and PSMB7 compared to the control, and failed to induce heme oxygenase-1 expression following bortezomib treatment. These indicate that differential proteasome levels and altered expression of stress-response genes could be underlying mechanisms of bortezomib sensitization in Nrf2-inhibited ovarian cancer cells.

Hydrogen Treatment Protects against Cell Death and Senescence Induced by Oxidative Damage

  • Han, A Lum;Park, Seong-Hoon;Park, Mi Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.365-371
    • /
    • 2017
  • Hydrogen has potential for preventive and therapeutic applications as an antioxidant. However, micro- and macroparticles of hydrogen in water disappear easily over time. In order to eliminate reactive oxygen species (ROS) related with the aging process, we used functional water containing nanoparticle hydrogen. Nanoparticle hydrogen does not disappear easily and collapse under water after long periods of time. We used murine embryonic fibroblasts that were isolated from 12.5-day embryos of C57BL/6 mice. We investigated the ability of nanoparticle hydrogen in water to suppress hydroxyurea-induced ROS production, cytotoxicity, and the accumulation of ${\beta}-galactosidase$ (an indicator of aging), and promote cell proliferation. The accumulation of ${\beta}-galactosidase$ in the cytoplasm and the appearance of abnormal nuclei were inhibited by daily treatment of cells with hydrogen water. When the aging process was accelerated by hydroxyurea-induced oxidative stress, the effect of hydrogen water was even more remarkable. Thus, this study showed the antioxidant and anti-senescence effects of hydrogen water. Nanoparticle hydrogen water is potentially a potent anti-aging agent.

Aspergillus fumigatus-derived demethoxyfumitremorgin C inhibits proliferation of PC3 human prostate cancer cells through p53/p21-dependent G1 arrest and apoptosis induction

  • Kim, Young-Sang;Park, Sun Joo
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • Human prostate cancer is the second most frequently diagnosed cancer worldwide, and its incidence rate continues to increase. Advanced prostate cancer is more difficult to treat than early forms due to its chemotherapy resistance. There is need for more effective agents that can inhibit the progression of advanced prostate cancer. Demethoxyfumitremorgin C (DMFTC) was isolated from the fermentation extract of the marine fungus Aspergillus fumigatus. Antiproliferative activity of DMFTC against human prostate cancer PC3 cells was examined through cell cycle analysis by flow cytometry, the fluorescent nuclear imaging analysis with propidium iodide (PI), and proteins expression related to cell cycle arrest and apoptosis were investigated via Western blotting. DMFTC inhibited PC3 cells growth through G1 phase cell cycle arrest and apoptosis induction. It activated the tumor suppressor p53 and the Cdk inhibitor p21, which regulate the cell progression into the G1 phase. Additionally, PI-positive late apoptotic non-viable cells were increased and the expression levels of the G1-positive downstream regulators cyclin D, cyclin E, Cdk2, and Cdk4 were decreased by DMFTC treatment. These results suggest that DMFTC induces G1 arrest and apoptosis induction through regulation of p53/p21-dependent cyclin-Cdk complexes, and it may be a useful therapeutic agent for the treatment of human advanced prostate cancer.

CDDO-Me alleviates oxidative stress in human mesenchymal stem cells

  • Cho, Hye Jin;Kim, Tae Min
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.285-291
    • /
    • 2021
  • Mesenchymal stem cells (MSCs) have been recognized as a therapeutic tool for various diseases due to its unique ability for tissue regeneration and immune regulation. However, poor survival during in vitro expansion and after being administrated in vivo limits its clinical uses. Accordingly, protocols for enhancing cell survivability is critical for establishing an efficient cell therapy is needed. CDDO-Me is a synthetic C-28 methyl ester of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, which is known to stimulate nuclear factor erythroid 2-related factor 2 (Nrf2)-antioxidant response element (ARE) pathway. Herein, report that CDDO-Me promoted the proliferation of MSCs and increased colony forming units (CFU) numbers. No alteration in differentiation into tri-lineage mesodermal cells was found after CDDO-Me treatment. We observed that CDDO-Me treatment reduced the cell death induced by oxidative stress, demonstrated by the augment in the expression of Nrf2-downstream genes. Lastly, CDDO-Me led to the nuclear translocation of NRF2. Our data indicate that CDDO-Me can enhance the functionality of MSCs by stimulating cell survival and increasing viability under oxidative stress.