Enhanced Sensitivity to Proteasome Inhibitor Bortezomib in Nrf2 Knockdown Ovarian Cancer Cells

Nrf2 영구 넉다운 난소암 세포주의 Proteasome 저해 항암제 Bortezomib에 대한 감수성 증가

  • Received : 2011.09.30
  • Accepted : 2011.11.18
  • Published : 2011.12.31

Abstract

NF-E2-related factor 2 (Nrf2), a master regulator of antioxidant genes in animals, has been associated with the resistance of cancer cells to several cytotoxic chemotherapeutics. Bortezomib, a reversible inhibitor of the 26S proteasome, is a novel class anti-cancer therapeutics approved for the treatment of refractory multiple myeloma. However, the molecular mechanism of drug-resistance remains elusive. In the present study, bortezomib sensitivity has been investigated in Nrf2 knockdown ovarian cancer cells. When Nrf2 expression is stably repressed using interfering RNA expression, bortezomib-induced apoptosis and cell death were significantly enhanced compared to nonspecific RNA control cells. Knockdown cells showed elevated expression in the catalytic subunit PSMB5, PSMB6, and PSMB7 compared to the control, and failed to induce heme oxygenase-1 expression following bortezomib treatment. These indicate that differential proteasome levels and altered expression of stress-response genes could be underlying mechanisms of bortezomib sensitization in Nrf2-inhibited ovarian cancer cells.

Keywords

References

  1. Glickman, M. H. and Ciechanover, A. : The ubiquitinproteasome proteolytic pathway: destruction for the sake of construction. Physiol. Rev. 82, 373 (2002). https://doi.org/10.1152/physrev.00027.2001
  2. Voges, D., Zwickl, P. and Baumeister, W. : The 26S proteasome: a molecular machine designed for controlled proteolysis. Annu. Rev. Biochem. 68, 1015 (1999). https://doi.org/10.1146/annurev.biochem.68.1.1015
  3. Nalepa, G., Rolfe, M. and Harper, J. W. : Drug discovery in the ubiquitin-proteasome system. Nat. Rev. Drug. Discov. 5, 596 (2006). https://doi.org/10.1038/nrd2056
  4. Richardson, P. G. and Mitsiades, C. : Bortezomib: proteasome inhibition as an effective anticancer therapy. Future. Oncol. 1, 161 (2005). https://doi.org/10.1517/14796694.1.2.161
  5. Roccaro, A. M., Hideshima, T., Richardson, P. G., Russo, D., Ribatti, D., Vacca, A., Dammacco, F. and Anderson, K. C. : Bortezomib as an antitumor agent. Curr. Pharm. Biotechnol. 7, 441 (2006). https://doi.org/10.2174/138920106779116865
  6. Kraus, M., Ruckrich, T., Reich, M., Gogel, J., Beck, A., Kammer, W., Berkers, C. R., Burg, D., Overkleeft, H., Ovaa, H. and Driessen, C. : Activity patterns of proteasome subunits reflect bortezomib sensitivity of hematologic malignancies and are variable in primary human leukemia cells. Leukemia 21, 84 (2007). https://doi.org/10.1038/sj.leu.2404414
  7. Richardson, P. G., Barlogie, B., Berenson, J., Singhal, S., Jagannath, S., Irwin, D., Rajkumar, S. V., Srkalovic, G., Alsina, M., Alexanian, R., Siegel, D., Orlowski, R. Z., Kuter, D., Limentani, S. A., Lee, S., Hideshima, T., Esseltine, D. L., Kauffman, M., Adams, J., Schenkein, D. P. and Anderson, K. C. : A phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med. 348, 2609 (2003). https://doi.org/10.1056/NEJMoa030288
  8. Itoh, K., Chiba, T., Takahashi, S., Ishii, T., Igarashi, K., Katoh, Y., Oyake, T., Hayashi, N., Satoh, K., Hatayama, I., Yamamoto, M. and Nabeshima, Y. : An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236, 313 (1997). https://doi.org/10.1006/bbrc.1997.6943
  9. Kobayashi, M. and Yamamoto, M. : Molecular mechanisms activating the Nrf2-Keap1 pathway of antioxidant gene regulation. Antioxid. Redox. Signal. 7, 385 (2005). https://doi.org/10.1089/ars.2005.7.385
  10. Li, W. and Kong, A. N. : Molecular mechanisms of Nrf2-mediated antioxidant response. Mol. Carcinog. 48, 91 (2009). https://doi.org/10.1002/mc.20465
  11. Hayes, J. D., McMahon, M., Chowdhry, S. and Dinkova- Kostova, A. T. : Cancer chemoprevention mechanisms mediated through the Keap1-Nrf2 pathway. Antioxid. Redox. Signal. 13, 1713 (2010). https://doi.org/10.1089/ars.2010.3221
  12. Kwak, M. K. and Kensler, T. W. : Targeting NRF2 signaling for cancer chemoprevention. Toxicol. Appl. Pharmacol. 244, 66 (2010). https://doi.org/10.1016/j.taap.2009.08.028
  13. Hayes, J. D. and McMahon, M. : NRF2 and KEAP1 mutations: permanent activation of an adaptive response in cancer. Trends. Biochem. Sci. 34, 176 (2009). https://doi.org/10.1016/j.tibs.2008.12.008
  14. Padmanabhan, B., Tong, K. I., Ohta, T., Nakamura, Y., Scharlock, M., Ohtsuji, M., Kang, M. I., Kobayashi, A., Yokoyama, S. and Yamamoto, M. : Structural basis for defects of Keap1 activity provoked by its point mutations in lung cancer. Mol. Cell. 21, 689 (2006). https://doi.org/10.1016/j.molcel.2006.01.013
  15. Singh, A., Misra, V., Thimmulappa, R. K., Lee, H., Ames, S., Hoque, M. O., Herman, J. G., Baylin, S. B., Sidransky, D., Gabrielson, E., Brock, M. V. and Biswal, S. : Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med. 3, e420 (2006). https://doi.org/10.1371/journal.pmed.0030420
  16. Shibata, T., Kokubu, A., Gotoh, M., Ojima, H., Ohta, T., Yamamoto, M. and Hirohashi, S. : Genetic alteration of Keap1 confers constitutive Nrf2 activation and resistance to chemotherapy in gallbladder cancer. Gastroenterology 135, 1358 (2008). https://doi.org/10.1053/j.gastro.2008.06.082
  17. Shibata, T., Ohta, T., Tong, K. I., Kokubu, A., Odogawa, R., Tsuta, K., Asamura, H., Yamamoto, M. and Hirohashi, S. : Cancer related mutations in NRF2 impair its recognition by Keap1-Cul3 E3 ligase and promote malignancy. Proc. Natl. Acad. Sci. U. S. A. 105, 13568 (2008). https://doi.org/10.1073/pnas.0806268105
  18. Shim, G. S., Manandhar, S., Shin, D. H., Kim, T. H. and Kwak, M. K. : Acquisition of doxorubicin resistance in ovarian carcinoma cells accompanies activation of the NRF2 pathway. Free Radic. Biol. Med. 47, 1619 (2009). https://doi.org/10.1016/j.freeradbiomed.2009.09.006
  19. Singh, A., Boldin-Adamsky, S., Thimmulappa, R. K., Rath, S. K., Ashush, H., Coulter, J., Blackford, A., Goodman, S. N., Bunz, F., Watson, W. H., Gabrielson, E., Feinstein, E. and Biswal, S. : RNAi-mediated silencing of nuclear factor erythroid-2-related factor 2 gene expression in non-small cell lung cancer inhibits tumor growth and increases efficacy of chemotherapy. Cancer. Res. 68, 7975 (2008). https://doi.org/10.1158/0008-5472.CAN-08-1401
  20. Manandhar, S., Choi, B. H., Ryoo, I. G., Kang, S. J., Kim, J. A., Choi, H. G., Park, P. H. and Kwak, M. K. : NRF2 inhibition represses ErbB2 signaling in ovarian carcinoma cells: Implications for tumor growth retardation and docetaxel sensitivity. (Submitted).
  21. Cho, J. M., Manandhar, S., Lee, H. R., Park, H. M. and Kwak, M. K.: Role of the Nrf2-antioxidant system in cytotoxicity mediated by anticancer cisplatin: implication to cancer cell resistance. Cancer. Lett. 260, 96 (2008). https://doi.org/10.1016/j.canlet.2007.10.022
  22. Fuchs, D., Berges, C., Opelz, G., Daniel, V. and Naujokat, C. : Increased expression and altered subunit composition of proteasomes induced by continuous proteasome inhibition establish apoptosis resistance and hyperproliferation of Burkitt lymphoma cells. J. Cell. Biochem. 103, 270 (2008). https://doi.org/10.1002/jcb.21405
  23. Oerlemans, R., Franke, N. E., Assaraf, Y. G., Cloos, J., van Zantwijk, I., Berkers, C. R., Scheffer, G. L., Debipersad, K., Vojtekova, K., Lemos, C., van der Heijden, J. W., Ylstra, B., Peters, G. J., Kaspers, G. L., Dijkmans, B. A., Scheper, R. J. and Jansen, G. : Molecular basis of bortezomib resistance: proteasome subunit beta5 (PSMB5) gene mutation and overexpression of PSMB5 protein. Blood 112, 2489 (2008). https://doi.org/10.1182/blood-2007-08-104950
  24. Busse, A., Kraus, M., Na, I. K., Rietz, A., Scheibenbogen, C., Driessen, C., Blau, I. W., Thiel, E. and Keilholz, U. : Sensitivity of tumor cells to proteasome inhibitors is associated with expression levels and composition of proteasome subunits. Cancer. 112, 659 (2008). https://doi.org/10.1002/cncr.23224
  25. Nguyen, T., Sherratt, P. J., Huang, H. C., Yang, C. S. and Pickett, C. B. : Increased protein stability as a mechanism that enhances Nrf2-mediated transcriptional activation of the antioxidant response element. Degradation of Nrf2 by the 26 S proteasome. J. Biol. Chem. 278, 4536 (2003). https://doi.org/10.1074/jbc.M207293200
  26. Sekhar, K. R., Soltaninassab, S. R., Borrelli, M. J., Xu, Z. Q., Meredith, M. J., Domann, F. E. and Freeman, M. L. : Inhibition of the 26S proteasome induces expression of GLCLC, the catalytic subunit for gamma-glutamylcysteine synthetase. Biochem. Biophys. Res. Commun. 270, 311 (2000). https://doi.org/10.1006/bbrc.2000.2419
  27. Maines, M. D. : The heme oxygenase system: update 2005. Antioxid. Redox. Signal. 7, 1761 (2005). https://doi.org/10.1089/ars.2005.7.1761
  28. Chen, J. and Regan, R. F. : Increasing expression of heme oxygenase-1 by proteasome inhibition protects astrocytes from heme-mediated oxidative injury. Curr. Neurovasc. Res. 2, 189 (2005). https://doi.org/10.2174/1567202054368344
  29. Wu, W. T., Chi, K. H., Ho, F. M., Tsao, W. C. and Lin, W. W. : Proteasome inhibitors up-regulate haem oxygenase-1 gene expression: requirement of p38 MAPK (mitogen-activated protein kinase) activation but not of NF-kappaB (nuclear factor kappaB) inhibition. Biochem. J. 379, 587 (2004). https://doi.org/10.1042/BJ20031579
  30. Yamamoto, N., Izumi, Y., Matsuo, T., Wakita, S., Kume, T., Takada-Takatori, Y., Sawada, H. and Akaike, A. : Elevation of heme oxygenase-1 by proteasome inhibition affords dopaminergic neuroprotection. J. Neurosci. Res. 88, 1934 (2010).