• Title/Summary/Keyword: treatment optimization

Search Result 708, Processing Time 0.035 seconds

Two-Step Oxidation of Refractory Gold Concentrates with Different Microbial Communities

  • Wang, Guo-hua;Xie, Jian-ping;Li, Shou-peng;Guo, Yu-jie;Pan, Ying;Wu, Haiyan;Liu, Xin-xing
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.11
    • /
    • pp.1871-1880
    • /
    • 2016
  • Bio-oxidation is an effective technology for treatment of refractory gold concentrates. However, the unsatisfactory oxidation rate and long residence time, which cause a lower cyanide leaching rate and gold recovery, are key factors that restrict the application of traditional bio-oxidation technology. In this study, the oxidation rate of refractory gold concentrates and the adaption of microorganisms were analyzed to evaluate a newly developed two-step pretreatment process, which includes a high temperature chemical oxidation step and a subsequent bio-oxidation step. The oxidation rate and recovery rate of gold were improved significantly after the two-step process. The results showed that the highest oxidation rate of sulfide sulfur could reach to 99.01 % with an extreme thermophile microbial community when the pulp density was 5%. Accordingly, the recovery rate of gold was elevated to 92.51%. Meanwhile, the results revealed that moderate thermophiles performed better than acidophilic mesophiles and extreme thermophiles, whose oxidation rates declined drastically when the pulp density was increased to 10% and 15%. The oxidation rates of sulfide sulfur with moderate thermophiles were 93.94% and 65.73% when the pulp density was increased to 10% and 15%, respectively. All these results indicated that the two-step pretreatment increased the oxidation rate of refractory gold concentrates and is a potential technology to pretreat the refractory sample. Meanwhile, owing to the sensitivity of the microbial community under different pulp density levels, the optimization of microbial community in bio-oxidation is necessary in industry.

Processing Optimization of Gelatin from Rockfish Skin Based on Yield

  • Kim, Hyung-Jun;Yoon, Min-Seok;Park, Kwon-Hyun;Shin, Joon-Ho;Heu, Min-Soo;Kim, Jin-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • The study was performed to optimize the processing conditions (alkali concentration, extraction time, and temperature) for rockfish skin gelatin based on yield using response surface methodology and comparison of the physicochemical properties with those of rockfish skin gelatin pretreated and extracted under ordinary conditions (alkali treatment concentration: 1.0 M; extraction time: 2 hr; extraction temperature: $60^{\circ}C$). Predicted maximum gelatin yield of 19.1% and gelatin content of 87.8% were obtained by extraction at $106.6^{\circ}C$ for 69.0 min after pretreatment with 1.1 M calcium hydroxide. Yield of gelatin extracted under high temperature/high pressure (G-HT/HP) was 54% higher than that extracted under ordinary temperature/time (G-OT/T). However, G-HT/HP was inferior in gel strength and gelling point to (G-OT/T), but comparable in transmission. Based on the physicochemical properties, G-HT/HP was unsuitable for use in products requiring higher physical properties, but could be useful for health-functional foods.

A study on the flexo printing wastewater treatment and recycling (Flexo 인쇄폐수의 처리 및 재활용에 관한 연구)

  • Jun, Yang-Ba;Hur, Hun;Cho, Kemin;Bae, Woo-Kun
    • Clean Technology
    • /
    • v.9 no.3
    • /
    • pp.107-113
    • /
    • 2003
  • Printing process generates a vast amount of toxical waste and wastewater by the development of printing and publishing industry. The regulations for various environmental pollution material, which were indispensably used in printing industries, were getting stronger. The printing industries should develop the cleaner technologies in order to avoid the regulations. In this paper, the separation characteristics of microfiltration, ultrafiltration, reverse osmosis were surveyed to make basic data for the optimization of process as cleaner technologies for printing industries. The $2kg/cm^2$ of operation pressure were suitable to the U/F System. Because of the permeate of U/F was below 3 NTU as turbidity, which was probed to be possible using the rinsing water in printing process. U/F System,

  • PDF

Selection of Optimum Ratio of 3 Components (Ir-Sn-Sb) Electrode using Design of Mixture Experiments (혼합물 실험계획법을 이용한 3성분(Ir-Sn-Sb) 전극의 최적비율 선정)

  • Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.25 no.5
    • /
    • pp.737-744
    • /
    • 2016
  • For electrolysis process using an insoluble electrode, electrochemical performance was greatly affected by the manufacturing method and procedure, such as the firing temperature, pre-treatment, type of precursor solution, coating method, electrode material, etc. Components of the electrode therein is one of the most important factors in electrochemical reaction. To achieve such characteristics, a appropriate ratio of the electrode material should be carefully chosen. The aim of this research was to apply experimental design method in the optimization of electrode component for the maximum generation of oxidants in electrochemical oxidation process. Mixture design, especially expanded simplex lattice design, in DOME (design of mixture experiments) with Design Expert - commercial software - was used to analyze the data. Analysis of variance (ANOVA) showed a high coefficient of determination ($R^2$) value of 0.9470, thus ensuring a satisfactory adjustment of the $3^{rd}$ order special cubic regression model with the experimental data. The application of response surface methodology (RSM) yielded the following regression equation, which is an empirical relationship between the TRO generation concentration and independent variables(mol ratio of 3 electrode components) in a real unit: TRO generation concentration $(mg/L)=TRO\;conc.=98.25{\times}[Ir]+49.71{\times}[Sn]+95.29{\times}[Sb]-16.91{\times}[Ir]{\times}[Sn]-29.47{\times}[Ir]{\times}[Sb]-22.65{\times}[Sn]{\times}[Sb]+703.19{\times}[Ir]{\times}[Sn]{\times}[Sb]$. The optimized formulation of the 3 component electrode for an high TRO (total residual oxidants) generation was acquired at mol ratio of Ir 0.406, Sn 0.210, Sb 0.384 (desirability d value, 1).

Application of CBD Zinc Sulfide (ZnS) Film to Low Cost Antireflection Coating on Large Area Industrial Silicon Solar Cell

  • U. Gangopadhyay;Kim, Kyung-Hea;S.K. Dhungel;D. Mangalaraj;Park, J.H.;J. Yi
    • Transactions on Electrical and Electronic Materials
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Zinc sulfide is a semiconductor with wide band gap and high refractive index and hence promising material to be used as ARC on commercial silicon solar cells. Uniform deposition of zinc sulfide (ZnS) by using chemical bath deposition (CBD) method over a large area of silicon surface is an emerging field of research because ZnS film can be used as a low cost antireflection coating (ARC). The main problem of the CBD bath process is the huge amount of precipitation that occurs during heterogeneous reaction leading to hamper the rate of deposition as well as uniformity and chemical stoichiometry of deposited film. Molar concentration of thiorea plays an important role in varying the percentage of reflectance and refractive index of as-deposited CBD ZnS film. Desirable rate of film deposition (19.6 ${\AA}$ / min), film uniformity (Std. dev. < 1.8), high value of refractive index (2.35), low reflectance (0.655) have been achieved with proper optimization of ZnS bath. Decrease in refractive index of CBD ZnS film due to high temperature treatment in air ambiance has been pointed out in this paper. Solar cells of conversion efficiency 13.8 % have been successfully achieved with a large area (103 mm ${\times}$ 103 mm) mono-crystalline silicon wafers by using CBD ZnS antireflection coating in this modified approach.

A Study on the Electrochemical Synthesis of L-DOPA Using Oxidoreductase Enzymes: Optimization of an Electrochemical Process

  • Rahman, Siti Fauziyah;Gobikrishnan, Sriramulu;Indrawan, Natarianto;Park, Seok-Hwan;Park, Jae-Hee;Min, Kyoungseon;Yoo, Young Je;Park, Don-Hee
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.10
    • /
    • pp.1446-1451
    • /
    • 2012
  • Levodopa or L-3,4-dihydroxyphenylalanine (L-DOPA) is the precursor of the neurotransmitter dopamine. L-DOPA is a famous treatment for Parkinson's disease symptoms. In this study, electroenzymatic synthesis of L-DOPA was performed in a three-electrode cell, comprising a Ag/AgCl reference electrode, a platinum wire auxiliary electrode, and a glassy carbon working electrode. L-DOPA had an oxidation peak at 376 mV and a reduction peak at -550 mV. The optimum conditions of pH, temperature, and amount of free tyrosinase enzyme were pH 7, $30^{\circ}C$, and 250 IU, respectively. The kinetic constant of the free tyrosinase enzyme was found for both cresolase and catacholase activity to be 0.25 and 0.4 mM, respectively. A cyclic voltammogram was used to investigate the electron transfer rate constant. The mean heterogeneous electron transfer rate ($k_e$) was $5.8{\times}10^{-4}$ cm/s. The results suggest that the electroenzymatic method could be an alternative way to produce L-DOPA without the use of a reducing agent such as ascorbic acid.

Laccase- and Peroxidase-Free Tyrosinase Production by Isolated Microbial Strain

  • Sambasiva Rao, K.R.S.;Tripathy, N.K.;Mahalaxmi, Y.;Prakasham, R.S.
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.2
    • /
    • pp.207-214
    • /
    • 2012
  • Laccase- and peroxidase-free tyrosinase has commercial importance in the production of L-3, 4-dihydroxyphenylalanine (L-DOPA), which is mainly used in the treatment of Parkinson's disease. In the present study, isolation of an actinomycetes microbial strain capable of producing only tyrosinase is reported. Among all soil isolates, three individual colonies revealed black color around the colony in the presence of tyrosine. Further screening for laccase and peroxidase activities using syringaldazine denoted that one of the isolates, designated as RSP-T1, is laccase and peroxidase negative and produces only tyrosinase. The microbe was authenticated as Streptomyces antibioticus based on 16S ribotyping. Effective growth of this isolate was noticed with the use of medium (pH 5.5) containing casein acid hydrolysate (10.0 g/l), $K_2HPO_4$ (5.0 g/l), $MgSO_4$ (0.25 g/l), L-tyrosine (1.0 g/l), and agar (15 g/l). The scanning electron micrograph depicted that the microbe is highly branched and filamentous in nature. The enzyme production was positively regulated in the presence of copper sulfate. The impact of different fermentation parameters on tyrosinase production depicted that the maximized enzyme titer values were observed when this isolate was grown at 6.5 pH and at $30^{\circ}C$ temperature under agitated conditions (220 rpm). Among all the studied physiological parameters, agitation played a significant role on tyrosinase production. Upon optimization of the parameters, the yield of tyrosinase was improved more than 100% compared with the initial yield.

Optimization of Pretreatment of Persimmon Peel for Ethanol Production by Yeast Fermentation (효모를 이용한 에탄올 생산을 위한 감껍질 전처리조건의 최적화)

  • Lee, Jong-Sub;Park, Eun-Hee;Kwun, Se-Young;Yeo, Soo-Hwan;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.42 no.2
    • /
    • pp.202-206
    • /
    • 2014
  • A response surface method based on a central composite design experiment was used to determine the optimum conditions for pretreatment of persimmon peel. It was mathematically predicted that the maximum amount of reducing sugars would be obtained at an $H_2SO_4$ concentration of 1.77% (w/v) and a heat treatment time of 26.4 min. A reducing sugar concentration of 63.23 g/l was obtained under the optimum pretreatment conditions determined by RSM. Under anaerobic growth conditions, Saccharomyces cerevisiae NK28 produced 15.52 g/l of ethanol with a yield of 0.34 g ethanol/g glucose from pretreated persimmon peel, which corresponded to 14% and 26% enhancements in ethanol productivity and ethanol yield, respectively, compared with those obtained in aerobic growth conditions. This study suggests that persimmon peel might be a useful substrate for bioethanol production by yeast fermentation.

The Study of Milling Properties for Optimization of Treatment and Recycling of Converter Slag (제강슬래그 처리 및 재활용의 최적화를 위한 분쇄 특성에 관한 연구)

  • Kuh, Sung-Eun;Hwang, Kyoung-Jin;Kim, Dong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.6
    • /
    • pp.1139-1148
    • /
    • 2000
  • To treat and recycle a large quantity of converter slag. the milling properties of -14/ +24 mesh-sized slag has been considered. The optimal conditions in milling process were investigated for producing powder-type slag and the required consumption was derived for the economical grinding. The characteristics of milling processes were studied in the variation of the rotational speed, milling time, filling ratio of ball, and size and amount of feed. The grinding efficiency was also examined. The optimal rotational speed in this experimental condition was observed to be the value of 79% of critical speed. The extent of grinding was increased with increasing the grinding time. but the efficiency of milling was decreased with the time. 50% ball filling was shown to have the optimal grinding effect, and less amount and small-sized feed made the milling efficiency high. As the result, using Bond's equation, power required for efficient milling was considered and the highest value was observed in the condition of high grinding time and optimal rotational speed.

  • PDF

Optimization of Operation Conditions for Improving the Nitrogen Removal Efficiency in Wastewater Treatment Plant (질소제거효율 향상을 위한 하수처리장 최적 운전조건 도출 연구)

  • Choi, Eun-Hee;Bram, Klapwijk;Mathijs, Oosterhuis
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • 네덜란드 브리젠빈 하폐수처리장 최종방류수의 $NH_4$-N 및 TN(Total Nitrogen)농도를 방류수 수질기준인 각각 4 mg/L와 10 mg/L에 맞추기 위한 최적의 운전조건을 도출하기 위해 다양한 제어시스템이 시뮬레이션 되었다. 본 연구에 사용된 모델은 IWA(International Water Association) 활성슬러지 모델 No.1 (ASM No.1)이었고, GPS-X가 시뮬레이터로 사용되었다. 모델링을 위한 매개변수 민감도 분석결과 ASM No.1의 총 19개 매개변수 중 8개 변수 ($Y_H$, ksh, koh, $b_H$, ${\mu}_a$, $k_{NA}$, kh, ka)가 방류수 수질에 영향을 미치는 것으로 조사되었고 이들 매개변수에 대해 보정을 수행하여 사용하였다. SRT, 호기/무산소기간, 외부탄소원 주입시간 변화에 따른 방류수질 변화를 시뮬레이션하였는데, 호기/무산소 11h/1h인 조건에서 SRT가 20일에서 25일로 증가되면 $NH_4$-N가 5.0 mg/L에서 2.9 mg/L로 감소되었고 호기/무산소 2h/1h의 조건에서는 SRT증가에 따라 $NH_4$-N은 큰 감소를 보이지만, 바이패스되는 유입수량의 감소로 탈질율이 낮아 방류수 TN이 11.1~11.5 mg/L로 예측되는 결과가 도출되었다. 탈질율을 높이기 위한 아세트산 주입은 동일한 양의 아세트산을 무산소 전기간 (1h)동안 균일 주입하는 것 보다는 무산소 초기 15분내에 주입하는 것이 효율적인 것으로 나타났다.