Browse > Article
http://dx.doi.org/10.4014/jmb.1106.06031

Laccase- and Peroxidase-Free Tyrosinase Production by Isolated Microbial Strain  

Sambasiva Rao, K.R.S. (Department of Biotechnology, Acharya Nagarjuna University)
Tripathy, N.K. (Department of Zoology, Berhampur University)
Mahalaxmi, Y. (Bioengineering and Environmental Center, Indian Institute of Chemical Technology)
Prakasham, R.S. (Bioengineering and Environmental Center, Indian Institute of Chemical Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.2, 2012 , pp. 207-214 More about this Journal
Abstract
Laccase- and peroxidase-free tyrosinase has commercial importance in the production of L-3, 4-dihydroxyphenylalanine (L-DOPA), which is mainly used in the treatment of Parkinson's disease. In the present study, isolation of an actinomycetes microbial strain capable of producing only tyrosinase is reported. Among all soil isolates, three individual colonies revealed black color around the colony in the presence of tyrosine. Further screening for laccase and peroxidase activities using syringaldazine denoted that one of the isolates, designated as RSP-T1, is laccase and peroxidase negative and produces only tyrosinase. The microbe was authenticated as Streptomyces antibioticus based on 16S ribotyping. Effective growth of this isolate was noticed with the use of medium (pH 5.5) containing casein acid hydrolysate (10.0 g/l), $K_2HPO_4$ (5.0 g/l), $MgSO_4$ (0.25 g/l), L-tyrosine (1.0 g/l), and agar (15 g/l). The scanning electron micrograph depicted that the microbe is highly branched and filamentous in nature. The enzyme production was positively regulated in the presence of copper sulfate. The impact of different fermentation parameters on tyrosinase production depicted that the maximized enzyme titer values were observed when this isolate was grown at 6.5 pH and at $30^{\circ}C$ temperature under agitated conditions (220 rpm). Among all the studied physiological parameters, agitation played a significant role on tyrosinase production. Upon optimization of the parameters, the yield of tyrosinase was improved more than 100% compared with the initial yield.
Keywords
Actinomycetes; enzyme; fermentation; isolation; tyrosinase;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Claus, H. and H. Decker. 2006. Bacterial tyrosinases. Syst. Appl. Microbiol. 29: 3-14.   DOI   ScienceOn
2 Dalfard, A. B., K. Khajeh, M. R. Soudi, H. N. Manesh, B. Ranjbar, and R. H. Sajedi. 2006. Isolation and biochemical characterization of laccase and tyrosinase activities in a novel melanogenic soil bacterium. Enzyme Microbial Technol. 39: 1409-1416.   DOI   ScienceOn
3 Dawley, R. M. and W. H. Flurkey. 1993. Differentiation of tyrosinase and laccase using 4-hexyl-resorcinol. Phytochemistry. 33: 281-284.   DOI   ScienceOn
4 Endo, K., Y. Hayashi, T. Hibi, K. Hosono, T. Beppu, and K. Ueda. 2003. Enzymological characterization of EpoA, a laccaselike phenol oxidase produced by Streptomyces griseus. J. Biochem. 33: 671-677.
5 Espin, J. C., M. F. Trujano, J. Tudela, and F. Garcia-Canovas. 1997. Study of stereospecificity in pear and strawberry polyphenol oxidases. J. Agric. Food Chem. 45: 1091-1096.   DOI   ScienceOn
6 Halaouli, S., M. Asther, K. Krus, L. Guo, M. Hamdi, and J. C. Sigoillot. 2005. Characterization of a new tyrosinase from Pycnoporus species with high potential for food technological applications. J. Appl. Microbiol. 98: 332-343.   DOI   ScienceOn
7 Harkin, M. J. and R. J. Obst. 1973. Syringaldazine, an effective reagent for detecting laccase and peroxidase in fungi. Experientia. 29: 381-387.   DOI   ScienceOn
8 Hearing, V. J. 1987. Mammalian monophenol monooxigenase (tyrosinase): Purification, properties, and reactions catalyzed. Methods Enzymol. 142: 154-163.
9 Hullo, M. F., I. Moszer, A. Danchin, and M. I. Verstraete. 2001. CotA of Bacillus subtilis is a copper-dependent laccase. J. Bacteriol. 183: 5426-5430.   DOI   ScienceOn
10 Inagaki, H., A. Koga, Y. Bessho, and H. Hori. 1998. The tyrosinase gene from medakafish: Transgenic expression rescues albino mutation. Pigment Cell Res. 1: 1283-1290.
11 Katz, E., C. J. Thompsons, and D. A. Hopwood. 1983. Cloning and expression of the tyrosinase gene from Streptomyces antibioticus in Streptomyces lividans. J. Gen. Microbiol. 129: 2703-2714.
12 Kumar, M. and W. H. Flurkey. 1991. Activity, isoenzymes and purity of mushroom tyrosinase in commercial preparations. Phytochemistry 30: 3899-3902.   DOI   ScienceOn
13 Kupper, U., D. M. Nidermann, G. Travaglini, and K. Lerch. Isolation and characterization of the tyrosinase gene from Neurospora crassa. J. Biol. Chem. 264: 17250-17258.
14 Mahalaxmi, Y., T. Sathish, C. S. Rao, and R. S. Prakasham. 2010. Corn husk as a novel substrate for the production of rifamycin B by isolated Amycolatopsis sp. RSP 3 under SSF. Process Biochem. 45: 47-53.   DOI   ScienceOn
15 Kwon, B. S., A. K. Haq, S. H. Pomerantz, and R. Halaban. 1087. Isolation and sequence of cDNA for human tyrosinase that maps at the mouse-c-albino locus. Proc. Natl. Acad. Sci. USA 84: 7473-7477.   DOI   ScienceOn
16 Lerch, K. and L. Ettlinger. 1972. Purification and characterization of a tyrosinase from Streptomyces glaucescens. Eur. J. Biochem. 31: 427-437.   DOI   ScienceOn
17 Mahalaxmi, Y., C. S. Rao, G. Suvarnalaxmi, T. Sathish, P. Sudhakar, and R. S. Prakasham. 2008. Rifamycin B production pattern in Nocardia RSP-3 strain and influence of barbital on antibiotic production. Curr. Trends Biotechnol. Pharm. 2: 173-181.
18 Mason, H. S. 1965. Oxidases. Annu. Rev. Biochem. 34: 595-634.   DOI   ScienceOn
19 Mayer, A. M. 2006. Polyphenol oxidases in plants and fungi: Going places? A review. Phytochemistry 67: 2318-2331.   DOI   ScienceOn
20 McMahona, A. M., E. M. Doyle, S. Brooks, and K. E. O. Connor. 2007. Biochemical characterisation of the coexisting tyrosinase and laccase in the soil bacterium Pseudomonas putida F6. Enzyme. Microbial Technol. 40: 1435-1441.   DOI   ScienceOn
21 Porta, G. and R. H. Thomson. 1976. Melanin pigmentation in mammals. Endeavour 35: 32-38.   DOI   ScienceOn
22 Romero, H. D., F. Solano, and S. A. Amat. Polyphenol oxidase activity expression in Ralstonia solanacearum. Appl. Environ. Microbiol. 71: 6808-6815.   DOI   ScienceOn
23 Suvarna Laxmi, G., T. Sathish, C. S. Rao, P. Brahmaiah, M. Hymavathi, and R. S. Prakasham. 2008. Palm fiber as novel substrate for enhanced xylanase production by isolated Aspergillus sp. RSP-6. Curr. Trends Biotechnol. Pharm. 2: 447-455.
24 Ruan, L., Y. Huang, G. Zhang, D. Yu, and S. Ping. 2002. Expression of the mel gene from Pseudomonas maltophilia in Bacillus thuringiensis. Lett. Appl. Microbiol. 34: 244-248.   DOI   ScienceOn
25 Sanchez, A. A. and F. Solano. 1997. A pluripotent polyphenol oxidase from the melanogenic marine Alteromonas sp. shares catalytic capabilities of tyrosinases and laccases. Biochem. Biophys. Res. Commun. 240: 787-792.   DOI   ScienceOn
26 Solano, F., P. Lucas-Elio, E. Fernandez, and A. Sanchez-Amat. 2000. Marinomonas mediterranea MMB-1 transposon mutagenesis: Isolation of a multipotent polyphenol oxidase mutant. J. Bacteriol. 182: 3754-3760.   DOI   ScienceOn
27 Tamura, K., J. Dudley, M. Nei, and Kumar, S. 2007. Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molec. Biol. Evol. 24: 1596-1599.   DOI   ScienceOn
28 Tuncagil, S., S. K. Kayahan, G. Bayramoglu, M. Y. Arica, and L. Toppare L. 2009. L-Dopa synthesis using tyrosinase immobilized on magnetic beads. J. Mol. Cat. B Enz. 58: 187-193.   DOI   ScienceOn
29 Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.   DOI
30 Wichers, H. J., K. Recourt, M. Hendriks, C. E. M. Ebbelaar, G. Biancone, F. A. Hoeberichts, et al. 2003. Cloning, expression and characterisation of two tyrosinase cDNAs from Agaricus bisporus. Appl. Microbiol. Biotechnol. 61: 336-341.   DOI