• Title/Summary/Keyword: traveling salesman

Search Result 185, Processing Time 0.032 seconds

GPU-based Parallel Ant Colony System for Traveling Salesman Problem

  • Rhee, Yunseok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.1-8
    • /
    • 2022
  • In this paper, we design and implement a GPU-based parallel algorithm to effectively solve the traveling salesman problem through an ant color system. The repetition process of generating hundreds or thousands of tours simultaneously in TSP utilizes GPU's task-level parallelism, and the update process of pheromone trails data actively exploits data parallelism by 32x32 thread blocks. In particular, through simultaneous memory access of multiple threads, the coalesced accesses on continuous memory addresses and concurrent accesses on shared memory are supported. This experiment used 127 to 1002 city data provided by TSPLIB, and compared the performance of sequential and parallel algorithms by using Intel Core i9-9900K CPU and Nvidia Titan RTX system. Performance improvement by GPU parallelization shows speedup of about 10.13 to 11.37 times.

An Approsimate Solution of Travelling Salesman Problem Using a Smoothing Method

  • ARAKI, Tomoyuki;YAMAMOTO, Fujio
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.75-79
    • /
    • 1998
  • It is well known that traveling salesman problem (for short, TSP) is one of mot important problems for optimization, and almost all optimization problems result in TSP. This paper describes on an effective solution of TSP using genetic algorithm. The features of our method are summarized as follows : (1) By using division and unification method, a large problem is replaced with some small ones. (2) Smoothing method proposed in this paper enables us to obtain a fine approximate solution globally. Accordingly, demerits caused by division and unification method are decreased. (3) Parallel operation is available because all divided problems are independent of each other.

  • PDF

A MMORPG Quest Reward Design Technique By Considering Optimal Quest Play Paths (최적 동선을 고려한 MMORPG 퀘스트 보상 설계 기법)

  • Kang, Shin-Jin;Shin, Seung-Ho;Cho, Sung-Hyun
    • Journal of Korea Game Society
    • /
    • v.9 no.4
    • /
    • pp.57-66
    • /
    • 2009
  • A quest system is one of the important parts in the MMORPG (Massive Multiplayer Online Role Playing Game) contents. Because of its complexity in combining various content components, quest reward design belongs to a complicated work in estimating quest reward levels correctly in the initial development stage. In this paper, we suggest a new quest reward design technique by considering optimal quest play paths. We model a quest reward problem as the TSP (Traveling Salesman Problem) and solve that by adopting genetic algorithms. With our system, game designers easily estimate the optimal quest play path and it can be useful in reducing the trial-errors in the initial quest design process.

  • PDF

New Population initialization and sequential transformation methods of Genetic Algorithms for solving optimal TSP problem (최적의 TSP문제 해결을 위한 유전자 알고리즘의 새로운 집단 초기화 및 순차변환 기법)

  • Kang, Rae-Goo;Lim, Hee-Kyoung;Jung, Chai-Yeoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.622-627
    • /
    • 2006
  • TSP(Traveling Salesman Problem) is a problem finding out the shortest distance out of many courses where given cities of the number of N, one starts a certain city and turns back to a starting city, visiting every city only once. As the number of cities having visited increases, the calculation rate increases geometrically. This problem makes TSP classified in NP-Hard Problem and genetic algorithm is used representatively. To obtain a better result in TSP, various operators have been developed and studied. This paper suggests new method of population initialization and of sequential transformation, and then proves the improvement of capability by comparing them with existing methods.

Improvement of Ant Colony Optimization Algorithm to Solve Traveling Salesman Problem (순회 판매원 문제 해결을 위한 개미집단 최적화 알고리즘 개선)

  • Jang, Juyoung;Kim, Minje;Lee, Jonghwan
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.3
    • /
    • pp.1-7
    • /
    • 2019
  • It is one of the known methods to obtain the optimal solution using the Ant Colony Optimization Algorithm for the Traveling Salesman Problem (TSP), which is a combination optimization problem. In this paper, we solve the TSP problem by proposing an improved new ant colony optimization algorithm that combines genetic algorithm mutations in existing ant colony optimization algorithms to solve TSP problems in many cities. The new ant colony optimization algorithm provides the opportunity to move easily fall on the issue of developing local optimum values of the existing ant colony optimization algorithm to global optimum value through a new path through mutation. The new path will update the pheromone through an ant colony optimization algorithm. The renewed new pheromone serves to derive the global optimal value from what could have fallen to the local optimal value. Experimental results show that the existing algorithms and the new algorithms are superior to those of existing algorithms in the search for optimum values of newly improved algorithms.

Intelligent Route Construction Algorithm for Solving Traveling Salesman Problem

  • Rahman, Md. Azizur;Islam, Ariful;Ali, Lasker Ershad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.33-40
    • /
    • 2021
  • The traveling salesman problem (TSP) is one of the well-known and extensively studied NPC problems in combinatorial optimization. To solve it effectively and efficiently, various optimization algorithms have been developed by scientists and researchers. However, most optimization algorithms are designed based on the concept of improving route in the iterative improvement process so that the optimal solution can be finally found. In contrast, there have been relatively few algorithms to find the optimal solution using route construction mechanism. In this paper, we propose a route construction optimization algorithm to solve the symmetric TSP with the help of ratio value. The proposed algorithm starts with a set of sub-routes consisting of three cities, and then each good sub-route is enhanced step by step on both ends until feasible routes are formed. Before each subsequent expansion, a ratio value is adopted such that the good routes are retained. The experiments are conducted on a collection of benchmark symmetric TSP datasets to evaluate the algorithm. The experimental results demonstrate that the proposed algorithm produces the best-known optimal results in some cases, and performs better than some other route construction optimization algorithms in many symmetric TSP datasets.

Analysis of Tour Information Services using Agent-based Simulation (시뮬레이션 모형을 통한 관광정보서비스 효과 분석)

  • Kim, Hyeon-Myeong;O, Jun-Seok
    • Journal of Korean Society of Transportation
    • /
    • v.24 no.6 s.92
    • /
    • pp.103-117
    • /
    • 2006
  • This study develops an agent-based simulation model to evaluate tourist information systems under ubiquitous environment. In this study, individual tourist's activity chaining behavior is formulated as a utility maximization problem. The underlying assumption of the model is that tourists increase their activities within their time and budget constraints to maximize their utilities. The model seeks individual's optimal tour schedule by solving Prize-Collecting Multiple-Day Traveling Salesman Problem(PC MD TSP). The simulation-based evaluation framework allows investigating individual utility gains by their information type and the total expenditure at each tour attractions. The real-time tour activity scheduling system enables tourists to optimize their tour activities by minimizing their time loss and maximizing their opportunity to use high utility facilities.

A Polynomial Time Algorithm of a Traveling Salesman Problem (외판원 문제의 다항시간 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.12
    • /
    • pp.75-82
    • /
    • 2013
  • This paper proposes a $O(n^2)$ polynomial time algorithm to obtain optimal solution for Traveling Salesman problem that is a NP-complete because polynomial time algorithm has been not known yet. The biggest problem in a large-scale Traveling Salesman problem is the fact that the amount of data to be processed is $n{\times}n$, and thus as n increases, the data increases by multifold. Therefore, this paper proposes a methodology by which the data amount is first reduced to approximately n/2. Then, it seeks a bi-directional route at a random point. The proposed algorithm has proved to be successful in obtaining the optimal solutions with $O(n^2)$ time complexity when applied to TSP-1 with 26 European cities and TSP-2 with 46 cities of the USA. It could therefore be applied as a generalized algorithm for TSP.

The Extended k-opt Algorithm for Traveling Salesman Problem (외판원 문제의 확장된 k-opt 알고리즘)

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.17 no.10
    • /
    • pp.155-165
    • /
    • 2012
  • This paper suggests traveling salesman problem algorithm that have been unsolved problem with NP-Hard. The proposed algorithm is a heuristic with edge-swap method. The classical method finds the initial solution starts with first node and visits to mostly adjacent nodes then decides the traveling path. This paper selects minimum weight edge for each nodes, then perform Min-Min method that start from minimum weight edge among the selected edges and Min-Max method that starts from maximum weight edges among it. Then we decide tie initial solution to minimum path length between Min-Min and Min-Max method. To get the final optimal solution, we apply previous two-opt to initial solution. Also, we suggest extended 3-opt and 4-opt additionally. For the 7 actual experimental data, this algorithm can be get the optimal solutions of state-of-the-art with fast and correct.

Partial Inverse Traveling Salesman Problems on the Line

  • Chung, Yerim;Park, Myoung-Ju
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.11
    • /
    • pp.119-126
    • /
    • 2019
  • The partial inverse optimization problem is an interesting variant of the inverse optimization problem in which the given instance of an optimization problem need to be modified so that a prescribed partial solution can constitute a part of an optimal solution in the modified instance. In this paper, we consider the traveling salesman problem defined on the line (TSP on the line) which has many applications such as item delivery systems, the collection of objects from storage shelves, and so on. It is worth studying the partial inverse TSP on the line, defined as follows. We are given n requests on the line, and a sequence of k requests that need to be served consecutively. Each request has a specific position on the real line and should be served by the server traveling on the line. The task is to modify as little as possible the position vector associated with n requests so that the prescribed sequence can constitute a part of the optimal solution (minimum Hamiltonian cycle) of TSP on the line. In this paper, we show that the partial inverse TSP on the line and its variant can be solved in polynomial time when the sever is equiped with a specific internal algorithm Forward Trip or with a general optimal algorithm.