• Title/Summary/Keyword: trapping condition

Search Result 70, Processing Time 0.025 seconds

The Relationship Between Hydrogen Trapping Behavior and SSCC Suceptibility of API X60/65 Grade Steels

  • Lee, Jae Myung;Kim, Jin Suk;Kim, Kyoo Young
    • Corrosion Science and Technology
    • /
    • v.2 no.3
    • /
    • pp.109-116
    • /
    • 2003
  • It is well known that SSCC (sulfide stress corrosion cracking) is caused by drastic ingression of hydrogen during the service and accumulation of hydrogen near the potential crack initiation site in the material. It is important to characterize the hydrogen trapping behavior to evaluate the service performance of the high strength pipeline steels. In this study. the relationship between the hydrogen trapping behavior and SSCC susceptibility is evaluated in terms of alloy composition, microstructure and carbide behavior. The hydrogen trapping behavior was measured by electrochemical hydrogen permeation test cell (Devanathan cell). The SSCC susceptibility is evaluated by constant extension rate test and constant strain lest method. The hydrogen trapping behavior is affected greatly by microstructure and nature of carbide particles. The fine TiC, and NbC in the matrix of ferritic structure acts as strong irreversible trap sites whereas the bainitic structure acts as reversible trap site. The SSCC susceptibility is closely related to not only the hydrogen trapping behavior but also the loading condition. As the activity of reversible trap site increases, SSCC susceptibility decreases under static loading condition below yield strength, whereas SSCC susceptibility increases under dynamic loading condition or above yield strength. As the activity of irreversible trap site increases. SSCC susceptibility increases regardless of loading condition. It is cased by the mixed effect of dislocation on hydrogen diffusion and trapping behavior.

Study on the efficiency of cleaning Process for Screen printing cleaning (스크린 인쇄 세정에 대한 세정공정 효율 연구)

  • 최성용
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.15 no.1
    • /
    • pp.85-96
    • /
    • 1997
  • The color difference between original and printed copy is affected mainly by ink trapping and optical properties of overprinted ink layer. Since the general expression itself about ink trapping is affected also by the optical properties, the analysis of color difference using the ink trapping only cannot be certain. This study will show a new approaching method for optical analysis of spectral reflectance and the effect of printing sequence on color difference in multi-color overprints under the condition of excluding completely the ink trapping problems by means of using transparent film as a substrate.

  • PDF

A study on the degradation by the hot carrier trapping of the submicron MOSFET with long stress condition (장시간 스트레스 조건에서 submicron MOSFET의 열전자 트래핑에 의한 노화현상에 대한 연구)

  • 홍순석
    • Electrical & Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.357-361
    • /
    • 1995
  • An experiment on characteristics of nMOSFET's in the long stress condition with the maximum of the substrate current has been carried out in order to study on the degradation due to the hot-carrier effect. Based on the measured result of the threshold voltage, the damage is mostly due to the hole injection into the oxide. After long stress, it was shown that the drain current increased at low gate voltages and hence decreased at high gate voltages.

  • PDF

A Study on Trapping Efficiency of the Non-point Source Pollution in Cheongmi Stream Using VFSMOD-w (VFSMOD-w 모형을 이용한 청미천 유입 비점오염물 저감효율 연구)

  • Son, Minwoo;Byun, Jisun;Yoon, Hyun-Doug;Jung, Tae-Hwa
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.1
    • /
    • pp.140-150
    • /
    • 2016
  • This study aims to investigate the effect of vegetation type, length of vegetative filter strip, and rainfall on trapping efficiency of the non-point source water pollution. Numerical experiments are carried out using VFSMOD-w. It is known from this study that the vegetation having the same value of revised Manning roughness coefficient shows the similar trapping efficiency in VFSMOD-w. When the length of vegetative filter strip increases twice, the trapping efficiency increases negligibly small under the same condition of rainfall. From this finding, it is also known that most of sediment are removed within a certain length of vegetative filter strips. It is concluded that the installation of vegetative filter strip is determined under the consideration of the rainfall characteristics, space of vegetation, and length of vegetative filter strip.

Hydrogen Diffusion in APX X65 Grade Linepipe Steels

  • Park, Gyu Tae;Koh, Seong Ung;Kim, Kyoo Young;Jung, Hwan Gyo
    • Corrosion Science and Technology
    • /
    • v.5 no.4
    • /
    • pp.117-122
    • /
    • 2006
  • Hydrogen permeation measurements have been carried out on API X65 grade linepipe steel. In order to study the effect of steel microstructure on hydrogen diffusion behavior in linepipe steel, the accelerated cooling condition was applied and then three different kinds of microstructures were obtained. Hydrogen permeation measurement has been performed in reference to modified ISO17081 (2004) and ZIS Z3113 method. Hydrogen trapping parameters in these steels were evaluated in terms of the effective diffusivity ($D_{eff}$), permeability ($J_{ss}L$) and the amount of diffusible hydrogen. In this study, microstructures which affect both hydrogen trapping and diffusion were degenerated pearlite (DP), acicular ferrite (AF), bainite and martensite/austenite constituents (MA). The low $D_{eff}$ and $J_{ss}L$ mean that more hydrogen can be trapped reversibly or irreversibly and the corresponding steel microstructure is dominant hydrogen trapping site. The large amount of diffusible hydrogen means that corresponding steel microstructure is predominantly reversible. The results of this study suggest that the hydrogen trapping efficiency increases in the order of DP, bainite and AF, while AF is the most efficient reversible trap.

Average Walk Length in One-Dimensional Lattice Systems

  • Lee Eok Kyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.13 no.6
    • /
    • pp.665-669
    • /
    • 1992
  • We consider the problem of a random walker on a one-dimensional lattice (N sites) confronting a centrally-located deep trap (trapping probability, T=1) and N-1 adjacent sites at each of which there is a nonzero probability s(0 < s < 1) of the walker being trapped. Exact analytic expressions for < n > and the average number of steps required for trapping for arbitrary s are obtained for two types of finite boundary conditions (confining and reflecting) and for the infinite periodic chain. For the latter case of boundary condition, Montroll's exact result is recovered when s is set to zero.

Study on the One-Strip Electrode Ceramic Filter Using the Energy Trapping Effect (에너지트랩 효과를 이용한 단일전극 세라믹 필터에 관한 연구)

  • 송준태;정인영
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.1
    • /
    • pp.73-81
    • /
    • 1991
  • In order to simulate the ceramic filter in the state of the one-strip electrode, the theory has been analyzed and a computer program has been developed using the energy trapping effect. The ceramic filters were fabricated using the PZT-4 specimen. The necessary condition that the ceramic filter has the energy trapping effect is that the electroded portion frequency should be smaller than the unelectroded portion frequency when the wave number is zero. Each of the average differences of the resonant point and bandwidth between by the theoretical calculations and by experiment results was 5.6[%] and 3.72[%]. It is considered that the one-strip ceramic filter having a desired characteristics and the lowest difference can be fabricated easily by means of the simulation developed in this paper and the fabrication methods.

  • PDF

Optimization of Analytical Procedure for Hydrogen Cyanide in Mainstream Smoke

  • Lee, John-Tae;Kim, Hyo-Keun;Hwang, Keon-Joong;Jang, Gi-Chul;Lee, Jeong-Min;Kim, Ick-Joong
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.29 no.2
    • /
    • pp.125-131
    • /
    • 2007
  • Hydrogen cyanide(HCN), formed from pyrolysis of various nitrogenous compounds such as protein, amino acids and nitrate in tobacco, is present in both the particulate phase and vapor phase of cigarette smoke. Typically the determination of HCN in cigarette smoke has been done through colorimetric and electrochemical techniques, such as fluorescence spectrometry, UV-spectrophotometry (UV), continuous flow analyzer (CFA), capillary GC-ECD and ion chromatography (IC). Most of these techniques are known to be time-consuming and some of them lack specificity or sensitivity. The available results from both our laboratory and reported literatures for 2R4F Kentucky reference cigarette, smoked under ISO condition, show a relatively wide variation ranging from 100 to 120 ug/cig of HCN. Especially, the precision and accuracy of the analytical results of HCN tend to get worse in low tar cigarettes and under intense smoking condition. In this paper, a more optimized analytical methods than previous ones are suggested. This method shows lower detection limit and has improved precision and accuracy, so it is applicable for wide tar level cigarettes under intense smoking condition as well as under ISO smoking condition. Important features of this method are improved sample collection and quantification systems such as the number of trapping units, volume, temperature and type of trapping solution. To avoid volatilization loss of HCN in analyzing mainstream smoke, it is highly recommended that pH values of trapping solutions should be maintained over 11 and cold traps should be used in collecting mainstream smoke.

A Study on Application of Ag Nano-Dots and Silicon Nitride Film for Improving the Light Trapping in Mono-crystalline Silicon Solar Cell (단결정 실리콘 태양전지의 광 포획 개선을 위한 Ag Nano-Dots 및 질화막 적용 연구)

  • Choi, Jeong-Ho;Roh, Si-Cheol;Seo, Hwa-Il
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.4
    • /
    • pp.12-17
    • /
    • 2019
  • In this study, the Ag nano-dots structure and silicon nitride film were applied to the textured wafer surface to improve the light trapping effect of mono-crystalline silicon solar cell. Ag nano-dots structure was formed by performing a heat treatment for 30 minutes at 650℃ after the deposition of 10nm Ag thin film. Ag thin film deposition was performed using a thermal evaporator. The silicon nitride film was deposited by a Hot-wire chemical vapor deposition. The effect of light trapping was compared and analyzed through light reflectance measurements. Experimental results showed that the reflectivity increased by 0.5 ~ 1% under all nitride thickness conditions when Ag nano-dots structure was formed before nitride film deposition. In addition, when the Ag nano-dots structure is formed after deposition of the silicon nitride film, the reflectance is increased in the nitride film condition of 70 nm or more. When the HF treatment was performed for 60 seconds to improve the Ag nano-dot structure, the overall reflectance was improved, and the reflectance was 0.15% lower than that of the silicon nitride film-only sample at 90 nm silicon nitride film condition.

The Deposition and Properties of Surface Textured ZnO:Al Films (표면 텍스쳐된 ZnO:Al 투명전도막 증착 및 특성)

  • 유진수;이정철;김석기;윤경훈;박이준;이준신
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.378-382
    • /
    • 2003
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCI (0.5%) to examine the electrical and surface morphology properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure md the substrate temperature. In low pressures (0.9mTorr) and high substrate temperatures ($\leq$$300^{\circ}C$), the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.