• Title/Summary/Keyword: transverse rebar

Search Result 33, Processing Time 0.023 seconds

Aseismatic Performance Analysis of Circular RC Bridge Piers II. Suggestion for Transverse Steel Ratio (원형 철근콘크리트 교각의 내진성능 II. 심부구속철근비 제안)

  • Park Chang-Kyu;Lee Dae-Hyoung;Lee Beom-Gi;Chung Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.775-784
    • /
    • 2005
  • In this research, major design factors have been evaluated for the establishment of the rational seismic design code of circular RC(reinforced concrete) bridge pier Previous experimental researches have drawn a conclusion that transverse confinement reinforcements have been excessively used for RC bridge piers in Korea. Thus, the objective of this study is to propose a rational design equation for transverse reinforcements of RC bridge piers in Korea which would be classified as a low or moderate seismic region. Newly proposed equation further considers the effect of the axial force ratio and the longitudinal steel ratio. Minimum transverse confinement steel ratio is also proposed to avoid probable buckling of the longitudinal reinforcing steels subjected to relatively low axial force. It is thought that these new codes seem to alleviate the rebar congestion in the plastic hinge region of RC bridge piers which contribute to the enhancement of constructibility and economization for RC bridge construction.

Flexural Strength of PHC Pile Reinforced with Infilled Concrete, Transverse and Longitudinal Reinforcements (내부충전 콘크리트와 횡보강 및 축방향 철근으로 보강된 PHC 말뚝의 휨강도)

  • Bang, Jin-Wook;Hyun, Jung-Hwan;Lee, Bang-Yeon;Lee, Seung-Soo;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.1
    • /
    • pp.91-98
    • /
    • 2013
  • The pre-tensioned spun high strength concrete (PHC) pile has poor load carrying capacity in shear and flexure, while showing excellent axial load bearing capacity. The purpose of this study is to evaluate the flexural performance of the concrete-infilled composite PHC (ICP) pile which is the PHC pile reinforced with infilled concrete, transverse and longitudinal reinforcement for the improvement of shear and flexural load carrying capacity. The ICP pile specimen was designed to make allowable axial compression and bending moment higher load bearing capacity than those determined through the investigation of abutment design cases. The allowable axial compression and bending moment of the ICP pile was obtained using the program developed for calculating the axial compression - bending moment interaction. Then, ICP pile specimens were manufactured and flexural tests were performed. From the test results, it was found that the maximum bending moment of the ICP pile was approximately 45% higher than that of the PHC pile and the safety factor of ICP pile design was about 4.5 when the allowable bending moment was determined to be 25% of the flexural strength.

An evaluation of compressive lap splice of the D22 rebar by concrete strengths (콘크리트 강도변화에 따른 D22mm 철근의 압축이음 성능 평가)

  • Lee, Sung-Ho;Chun, Sung-Chul;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.1081-1084
    • /
    • 2008
  • Column specimens were constructed with main parameters significantly affecting the strength of the compression lap splice, such as lap length, spacing of lapped bars, amount and location of transverse reinforcements, and concrete strength. An experimental study has been conducted with column specimens in concrete strength of 40 to 60 MPa. Diameters of lapped reinforcing bars are 22 mm. An axial load was monotonically applied to the column specimens. All specimens failed in a brittle sudden manner and cover concrete was blasted out at maximum load. Compression lap splice strengths of specimens were evaluated from strains measured at the beginning of the lap length. Effects of the main parameters on the strengths of compression lap splice are assessed. Similarly to strengths of tension lap slice, the compression splice strength is found to be affected by lap length, spacing of lapped bars, transverse reinforcements.

  • PDF

Rapid retrofit of substandard short RC columns with buckled longitudinal bars using CFRP jacketing

  • Marina L. Moretti
    • Earthquakes and Structures
    • /
    • v.24 no.2
    • /
    • pp.97-109
    • /
    • 2023
  • This experimental study investigates the effectiveness of applying carbon fiber reinforced polymer (CFRP) jackets for the retrofit of short reinforced concrete (RC) columns with inadequate transverse reinforcement and stirrup spacing to longitudinal rebar diameter equal to 12. RC columns scaled at 1/3, with round and square section, were subjected to axial compression up to failure. A damage scale is introduced for the assessment of the damage severity, which focusses on the extent of buckling of the longitudinal rebars. The damaged specimens were subsequently repaired with unidirectional CFRP jackets without any treatment of the buckled reinforcing bars and were finally re-tested to failure. Test results indicate that CFRP jackets may be effectively applied to rehabilitate RC columns (a) with inadequate transverse reinforcement constructed according to older practices so as to meet modern code requirements, and (b) with moderately buckled bars without the need of previously repairing the reinforcement bars, an application technique which may considerably facilitate the retrofit of earthquake damaged RC columns. Factors for the estimation of the reduced mechanical properties of the repaired specimens compared to the respective values for intact CFRP-jacketed specimens, in relation to the level of damage prior to retrofit, are proposed both for the compressive strength and the average modulus of elasticity. It was determined that the compressive strength of the retrofitted CFRP-jacketed columns is reduced by 90% to 65%, while the average modulus of elasticity is lower by 60% to 25% in respect to similar undamaged columns jacketed with the same layers of CFRP.

Seismic Evaluation of the Existing RC Piers (기존 철근콘크리트 교각의 내진성평가)

  • 전귀현;이지훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.2 no.4
    • /
    • pp.155-168
    • /
    • 1998
  • In this paper, the structural properties of the existing reinforced concrete(RC) piers are surveyed and the major factors influencing the member strength and deformation capacity are identified. Also a seismic evaluation procedure of RC piers is presented. The factors controlling the member strength are the applied axial load, the reinforcement ratio and yield strength of longitudinal rebar for flexural strength, and the transverse reinforcement for shear strength. Member deformation capacity largely depends on transverse reinforcement ratio and anchor detail, and splice location of longitudinal reinforcement. The above structural detail should be investigated for the detail seismic evaluation of RC piers. The most of existing RC piers have inadequate transverse reinforcement anchor details and the splices of longitudinal reinforcement in the pier bottom where plastic hinges are formed after yielding. Therefore the deformation capacity is not enough for the ductile flexural behavior of the RC piers. The presented evaluation procedure can be used for the rational decisions as to seismic retrofitting of the existing RC piers.

  • PDF

An Experimental Study on Structural Capacity of Joint Between Composite PHC Wall Pile and Bottom Slab with CT Shear Connector (CT형강 전단연결재가 적용된 합성형 PHC벽체파일-하부슬래브 연결부 성능에 관한 실험적 연구)

  • Mha, Ho Seong;Won, Jeong Hun;Lee, Jong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.531-541
    • /
    • 2013
  • This paper investigated the structural capacity of the CT shear connectors, which is a kind of the perfobond rib and functions as an anchor transferring the tension force in the joint between a composite PHC wall pile and a bottom slab. The direct pull-out test was performed for various specimens. From failure modes and load-displacement curves, it was found that transverse rebars should be placed to holes in a web to restrict pull-out failure of CT shear connectors. The results of additional tests for specimens with transverse rebars and various support lengths indicated that all specimens were failed by the tension failure of PHC pile before pull-out failure of CT shear connector and concrete pull-out failure. Thus, the CT shear connector could endure the tension force between the PHC wall pile and the bottom slab.

Headed Bar Anchorage of Exterior Beam Column Joints in Nuclear Power Plants (원전구조물의 외부 보기둥 접합부에서 철근 기계적 정착)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.42-45
    • /
    • 2006
  • This study investigated headed bar anchorage of exterior beam column joints in nuclear power plants. In nuclear power plant structures, anchorage of headed bar is recommended to satisfy ACI 349-01 App. B that are based on the Concrete Capacity Design (CCD) method. However, CCD method may lead to very conservative results for beam column joints where head is anchored within the diagonal strut and concrete is confined by transverse rebar. Compared with results of 5 joint specimens, the anchorage capacities calculated by ACI 349-01 are underestimated by 70-90%. Therefore, it is necessary to amend ACI 349-01 for the mechanical anchorage in beam column joints.

  • PDF

Effects of tensile softening on the cracking resistance of FRP reinforced concrete under thermal loads

  • Panedpojaman, Pattamad;Pothisiri, Thanyawat
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.447-461
    • /
    • 2010
  • Fiber reinforced polymer (FRP) bars have been widely used as reinforcement for concrete structures. However, under elevated temperatures, the difference between the transverse coefficients of thermal expansion of FRP rebars and concrete may cause the splitting cracks of the concrete cover. As a result, the bonding of FRP-reinforced concrete may not sustain its function to transfer load between the FRP rebar and the surrounding concrete. The current study investigates the cracking resistance of FRP reinforced concrete against the thermal expansion based on a mechanical model that accounts for the tensile softening behavior of concrete. To evaluate the efficacy of the proposed model, the critical temperature increments at which the splitting failure of the concrete cover occurs and the internal crack radii estimated are compared with the results obtained from the previous studies. Simplified equations for estimating the critical temperature increments and the minimum concrete cover required to prevent concrete splitting failure for a designated temperature increment are also derived for design purpose.

Static Behavior of Steel-Concrete Composite Beam with Perfobond Rib Shear Connector (Perfobond rib 전단연결재가 설치된 강.콘크리트 합성보의 정적거동)

  • Ahn, Jin Hee;Chung, Hamin;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.421-432
    • /
    • 2009
  • In this study, push-out and static loading tests were conducted to evaluate the behavioral characteristics of composite beams with a perfobond rib shear connector. The shear capacity of the perfobond rib was found to be proportional to its concrete strength, which is in turn affected by the increase in the concrete end-bearing strength and concrete dowel action to resist the shear force. The relative slips of the push-out specimen, however, which was used to assess the ductility of the shear connector, increased to some extent, but it no longer increased when it reached the critical concrete strength because of the flexibility of the transverse rebar in the rib hole. The static-loading-test results revealed a crack on the concrete slab in the composite beam with a perfobond rib on the side of the rib hole and transverse rebar for the applied moment and shear force to the rib hole, depending on the static loading. The shear resistance characteristics of the perfobond rib shear connector were found to resist the shear force from the relative slip on the interface of the composite beam. Thus, the sectional effect of the shear connector to the composite beam with a perfobond rib should be considered when designing the composite beam because the behavior of the composite beam can change owing to the shear connector.

Development of Optimum Grip System in Developing Design Tensile Strength of GFRP Rebars (GFRP 보강근의 설계 인장강도 발현을 위한 적정 그립시스템 개발)

  • You Young-Chan;Park Ji-Sun;You Young-Jun;Park Young-Hwan;Kim Keung-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.947-953
    • /
    • 2005
  • Previous test results showed that the current ASTM(American Standard for Testing and Materials) grip adapter for GFRP(Glass Fiber Reinforced Polymer) rebar was not fully successful in developing the design tensile strength of GFRP rebars with reasonable accuracy. It is because the current ASTM grip adapter which is composed of a pair of rectangular metal blocks of which inner faces are grooved along the longitudinal direction does not take into account the various geometric characteristics of GFRP rebar such as surface treatment, shape of bar cross section as well as physical characteristics such as poisson effect, elastic modulus in the transverse direction and so on. The objective of this paper is to provide how to proportion the optimum diameter of inner groove in ASTM grip adapter to develop design tensile strength of GFRP rebar. The proportioning of inner groove in ASTM grip adapter is based on the force equilibrium of GFRP rebar between tensile capacity and minimum frictional resistance required along the grip adapter. The frictional resistance of grip adapter is calculated based on the compressive strain compatibility in radial direction induced by the difference between diameter of GFRP rebar and inner groove In ASTM grip. All testing procedures were made according to the CSA S806-02 recommendations. From the preliminary test results on round-type GFRP rebars, it was found that maximum tensile loads acquired under the same testing conditions is highly affected by the diameter of inner groove in ASTM grip adapter. The grip adapter with specific dimension proportioned by proposed method recorded the highest tensile strength among them.