• Title/Summary/Keyword: transverse joint

Search Result 254, Processing Time 0.023 seconds

Effect of Dowel Bar on the transverse joint at the cement concrete pavement by model test (모형실험에 의한 강성포장체 가로줄눈에 다우웰바가 미치는 영향)

  • 배주성;고영주;김평수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.10b
    • /
    • pp.633-636
    • /
    • 1998
  • The use of concrete pavements is increasing by virtue of durability and excellent load resisting capacity. But cracks and demage in concrete pavements may be occurred by continuous reciclic load, as time goes by. Therefore, transverser contraction joints are constructed in concrete pavements to relieve tensile stresses, and when properly spaced they control the location of transverse cracks.

  • PDF

Evaluating the performance AASHTOWare's mechanistic-empirical approach for roller-compacted concrete roadways

  • Emin Sengun
    • Computers and Concrete
    • /
    • v.33 no.4
    • /
    • pp.445-469
    • /
    • 2024
  • The Federal Highway Administration (FHWA) has recommended the use of AASHTOWare Pavement Mechanistic-Empirical Design (PMED) software for Roller-Compacted Concrete (RCC) pavement design, but specific calibration for RCC is missing. This study investigates the software's capacity to predict the long-term performance of RCC roadways within the framework of conventional concrete pavement calibration. By reanalyzing existing RCC projects in several U.S. states: Colorado, Arkansas, South Carolina, Texas, and Illinois, the study highlights the need for specific calibration tailored to the unique characteristics of RCC. Field observations have emphasized occurrence of early distresses in RCC pavements, particularly transverse-cracking and joint-related issues. Despite data challenges, the AASHTOWare PMED software exhibits notable correlation between its long-term predictions and actual field performance in RCC roadways. This study stresses that RCC applications with insufficient joint spacing and thickness are prone to premature cracking. To enhance the accuracy of RCC pavement design, it is essential to discuss the inclusion of RCC as a dedicated rigid pavement option in AASHTOWare PMED. This becomes particularly crucial when the rising popularity of RCC roadways in the U.S. and Canada is considered. Such an inclusion would solidify RCC as a viable third option alongside Jointed Plain Concrete Pavements (JPCP) and Continuously Reinforced Concrete Pavements (CRCP) for design and deployment of rigid pavements. The research presents a roadmap for future calibration endeavors and advocates for the integration of RCC pavement as a distinct pavement type within the software. This approach holds promise for achieving more precise RCC pavement design and performance predictions.

Seismic Assessment of Shear Capacity of RC Beam-Column Joints Without Transverse Re-bars (내진성능평가시 횡보강근이 없는 RC 보-기둥 접합부의 전단내력 평가)

  • Lee, Young Wook
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.5
    • /
    • pp.249-259
    • /
    • 2019
  • To study the seismic resistance of the shear capacity of the RC beam-column joints of two-story and four-story RC buildings, sample buildings are designed with ordinary moment resisting frame. For the shear capacity of joints, the equations of FEMA 356 and NZ seismic assessment are selected and compared. For comparison, one group of buildings is designed only for gravity loads and the other group is designed for seismic and gravity loads. For 16 cases of the designed buildings, seismic performance point is evaluated through push-over analysis and the capacity of joint shear strength is checked. Not only for the gravity designed buildings but also for seismic designed buildings, the demand of joint shear is exceeding the capacity at exterior joints. However, for interior joint, the demand of joint shear exceeds the capacity only for one case. At exterior joints, the axial load stress ratio is lower than 0.21 for gravity designed buildings and 0.13 for seismic designed buildings.

An Experimental Study on Structural Capacity of Joint Between Composite PHC Wall Pile and Bottom Slab with CT Shear Connector (CT형강 전단연결재가 적용된 합성형 PHC벽체파일-하부슬래브 연결부 성능에 관한 실험적 연구)

  • Mha, Ho Seong;Won, Jeong Hun;Lee, Jong Ku
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.531-541
    • /
    • 2013
  • This paper investigated the structural capacity of the CT shear connectors, which is a kind of the perfobond rib and functions as an anchor transferring the tension force in the joint between a composite PHC wall pile and a bottom slab. The direct pull-out test was performed for various specimens. From failure modes and load-displacement curves, it was found that transverse rebars should be placed to holes in a web to restrict pull-out failure of CT shear connectors. The results of additional tests for specimens with transverse rebars and various support lengths indicated that all specimens were failed by the tension failure of PHC pile before pull-out failure of CT shear connector and concrete pull-out failure. Thus, the CT shear connector could endure the tension force between the PHC wall pile and the bottom slab.

A Study on Joint Position at Concrete Pavement with Box Culverts (박스 암거가 통과하는 콘크리트 포장의 줄눈 위치에 관한 연구)

  • Park, Joo-Young;Sohn, Dueck-Su;Lee, Jae-Hoon;Jeong, Jin-Hoon
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.45-53
    • /
    • 2012
  • Hollows are easily made and bearing capacity is lowered near underground structures of concrete pavement because of poor compaction and long term settlement of the ground. Distresses occur and lifespan is shortened because of larger stress induced by external loadings expected than that in the design. In this paper, the distresses of the concrete pavement slab over box culverts were investigated at the Korea Expressway Corporation(KEC) test road. The transverse cracking of the slabs over the culverts was compared between up and down lines with different soil cover depth. The box culvert without soil cover and concrete pavement were modeled and analyzed by the finite element method(FEM) to verify the transverse cracking at the test road. Wheel loading was applied after self weight of the pavement and temperature gradient of the concrete slab at Yeojoo, Gyeonggi where the test road is located were considered. Positions of maximum tensile stress and corresponding positions of the wheel loading were found for each loading combination. Joint position minimizing the maximum tensile stress was found and optimal slab length over the culverts with diverse size were suggested.

THE EFFECT OF PROCESSING METHOD AND SURFACE DESIGN ON THE TRANSVERSE STRENGTH OF REPAIRED DENTURE BASE RESIN (온성방법과 단면형태가 수종의 의치상 수리레진의 결합강도에 미치는 영향)

  • Kim, Kang-Nam;Bae, Tae-Sung;Han, Jung-Suk
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.34 no.4
    • /
    • pp.665-674
    • /
    • 1996
  • This study was designed to evaluate the effect of processing method and surface design on the transverse strength of repaired denture base resin. Three heat-cured denture base resins(Vertex, Lucitone, Lang), one cold-cured resin(Lang), and one light-cured resin(Dentacolor gingiva material) were used for repair purpose. The specimens for 3-point flexure test were fabricated by five processing methods such as self-curing, pressure pot, boiling water, processing, and light curing. Finally to evaluate the effect of surface designs for repaired resin, three surface designs(butt, bevel, inverse bevel) were tested. Within the limit of this study, following conclusions were drawn. 1. Lucitone denture base material showed highest flexural strength of $131.37{\pm}2.15MPa$, and there were significant differences in stength between Lucitone and other resins. 2. Between two different self curing methods, self curing repair resin, Lang, cured by pressure pot method showed highest flexural strength, $58.49{\pm}4.89MPa$. 3. Among the heat cured repair resins, maximum transverse strength value of $88.69{\pm}16.60MPa$ was recorded in Lucitone group cured by processing method. 4. Inverse bevel joint design showed significantly higher bond strength than butt joint group, Maximum bond strength was $59.36{\pm}1.33MPa$ in inverse bevel joint design group.

  • PDF

A Case Report of a Patient with Relapsing Transverse Myelitis Treated by Korean Medical Treatment (재발성 횡단성 척수염 환자의 한방치험 1례)

  • Lee, Ook Jae;Lee, Dong Geun;Lee, Ju Hee;Lee, Jung Hun;Kim, Seon Wook;Shin, Jeong Cheol
    • Journal of Acupuncture Research
    • /
    • v.31 no.4
    • /
    • pp.155-162
    • /
    • 2014
  • Objectives : The purpose of this study is to report the effect of Korean medical treatment on a patient with relapsing transverse myelitis. Methods : The patient was treated using acupuncture, pharmacopuncture, herbal medicine and other treatments including moxibustion and therapeutic exercise for 8 weeks. We evaluated the patient's motor grade with medical research council(MRC) scale and evaluated active range of motion in the hip, knee, and anke joint. Results : Through treatment the patient's motor grade and active range of motion all improved. Other symptoms such as lower limb hypoesthesia and residual urine sensation also showed improvement. Conclusions : We concluded that Korean medicine treatment had respectable effect in improving symptoms on the patient with relapsing transverse myelitis.

A STUDY REPAIRED JOINT STRENGTH OF COMPLETE DENTURE (의치수리(義齒修理)에 있어 파절접합부(破折接合部)의 조작형태(造作形態)가 의치(義齒)의 결합력(結合力)에 미치는 영향(影響)에 관(關)한 연구(硏究))

  • Lee Woo-Hyun;Heo Seong-Joo;Cho In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.29 no.3
    • /
    • pp.101-110
    • /
    • 1991
  • The purpose of this study was to compare the repaired joint strength among several edge profiles after denture repair. For this study, eight edge profiles were used for repair methods and five self-curing resin brands were used for repair materials. Break away loads were tested after 1 hr., 24 hrs. and 1 week. Instron was used for testing the transverse strength of repaired specimen. The results were as follows. 1. Repaired joint strength was about 35-65% of that of original specimen. 2. Joint strengths of round, inverse knife, inverse rabbit, lap ogee joint were higher tnan that of traditional simple butt joint 3. Joint strength of the simple butt joint was low significant. 4. Joint strengths after 1 hr. specimen were lower than those of 24 hrs. and 1 week specimens in joint strengths. 5. There were no significant differences between 24 hrs. and 1 week specimens in joint strengths. 6. It look more than 24 hours to gain satisfactory physical property after repairing the fractured denture base when self-curing resin was used for repair.

  • PDF

The Efficacy of Transverse Fixation and Early Exercise in the Treatment of Fourth Metacarpal Bone Fractures

  • Moon, Suk-Ho;Kim, Hak-Soo;Jung, Sung-No;Kwon, Ho
    • Archives of Plastic Surgery
    • /
    • v.43 no.2
    • /
    • pp.189-196
    • /
    • 2016
  • Background Several techniques have been designed to treat fifth metacarpal fractures reported to be effective. However, these methods cannot be easily applied to the fourth metacarpal due to its central anatomical position. In this study, we sought to analyze the functional outcomes of patients who underwent transverse pinning for a fourth metacarpal bone fracture. Methods A total of 21 patients were selected and their charts were retrospectively reviewed. After fracture reduction, two transverse Kirchner wires were first inserted from the fifth metacarpal to the third metacarpal transversely at the distal part of the fractured bone, and then another two wires were inserted at the proximal part of the fractured bone. The splint was removed approximately one week postoperatively and the Kirchner wires were removed four to five weeks postoperatively. Patients started active and passive exercise one week after the operation. Pain visual analog scores, total active and passive motion, and the active and passive range of motion of the metacarpophalangeal joint and grip strength were evaluated. Results Dorsal angulation improved from a preoperative value of $44.2^{\circ}$ to a postoperative value of $5.9^{\circ}$. Six weeks after surgery, functional recovery parameters, such as range of motion and grip strength, had improved to 98% of the function of the normal side. No major complication was observed. Conclusions We suggest that the transverse pinning of fourth metacarpal bone fractures is an effective treatment option that is less invasive than other procedures, easy to perform, requires no secondary surgery, minimizes joint and soft tissue injury, and allows early mobilization.

Experimental Study on the Seismic Behavior Simulation of Modular Expansion Joint (모듈러 신축이음장치 지진거동 모사 실험적 연구)

  • Lee, Jung-Woo;Choi, Eun-Suk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.43-48
    • /
    • 2022
  • In order to evaluate the seismic performance of the modular expansion joint known for its large expansion allowance and remarkable durability, this study conducts seismic response analysis and seismic simulation test. The bridge selected for the seismic response analysis is a cable stayed bridge with main span length of 1,000m. Three artificial earthquake were generated with respect to the design response spectra of the Korean Standards (KS), AASHTO LRFD and Eurocode, and applied to the selected bridge. The seismic simulation tests reproduced the artificial earthquakes using dynamic hydraulic actuators in the longitudinal and transverse directions. The test results verified the durability and safety of the expansion joint in view of its seismic behavior since abnormal behavior or failure of the expansion joint was not observed when the artificial earthquake waves were applied in the longitudinal direction, transverse direction and both directions.