• Title/Summary/Keyword: transverse joint

Search Result 255, Processing Time 0.031 seconds

Evaluation of Seismic Performance of Prefabricated Bridge Piers with a Circular Solid Section (중실원형단면 조립식 교각의 내진 성능 평가)

  • Kim, Hyun-Ho;Shim, Chang-Su;Chung, Chul-Hun;Kim, Cheol-Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.23-31
    • /
    • 2007
  • Fast bridge construction has been increasingly needed according to the changed construction environment. This paper deals with quasi-static tests on precast piers for bridge substructures. One of the most crucial aspect of the design of precast prestressed concrete bridge piers is the seismic performance. Seven precast pier elements were fabricated. The amount of prestressing bars, the prestressing force, and the location and number of the joint between segments were the main test parameters. Test results showed that the introduced axial prestress made the restoration of the deformation under small lateral displacement and minor damage. However, there was no effect of the prestress when the plastic hinge region was damaged severely due to large lateral displacement. Judging from the observed damage, the design of the joints in precast piers should be done for the first joint between the foundation and the pier segment. The amount of the necessary prestressing steel may be designed to satisfy the P-M diagram according to the service loads, not by having the same steel ratio as normal RC bridge piers. In order to satisfy the current required displacement ductility, it is necessary to have the same amount of the transverse reinforcements as RC piers. As the steel ratio increases, the energy absorption capacity increases. The number of joints showed a little influence on the energy absorption capacity.

The Effect of Application of a Non-Elastic Fixation Belt on the Balance Ability and Fall Prevention in Elderly Women (비탄력 고정식 벨트가 노인 여성의 균형능력과 낙상예방에 미치는 영향)

  • Lee, Jang-Tae;Chon, Seung-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.398-404
    • /
    • 2017
  • The aim of this study was to determine the effect of a non-elastic fixation belt on the balance ability and fall prevention in elderly women. Elderly women experience reduced balance ability and an increased risk of falls due to a weakening of the surrounding sacroiliac joint and pelvic muscles during childbirth and menopause. On the other hand, specific studies are still needed. The subjects were allocated randomly to two groups: control (n=20) and experimental (n=20). The experimental group used a non-elastic fixation belt, whereas the control group had no fixation belt. The balance ability and the fall index were measured in all subjects using a balance measurement device, and the low abdominal muscle thickness was determined in the experimental group using ultrasound imaging for the exact application of the non-elastic fixation belt. The following statistical analysis was performed: an independent t-test for the general characteristics of the subjects, $2{\times}2$ analysis of variance with repeated measures for the balance and fall index score, and a paired t-test for the abdominal muscle thickness. The group ${\times}$ time interaction effect showed significant improvement in the General Stability Index (F1,38=47.24, p=0.001), Fourier Harmony Index (F1,38=88.83, p=0.001), Weight Distribution Index (F1,38=50.21, p=0.001), and Fall Index (F1,38=21.59, p=0.001). The thicknesses of the transverse abdominal (p=0.001) and internal oblique (p=0.001) muscles were increased significantly in the experimental group after using the non-elastic fixation belt. Overall, the application of a non-elastic fixation belt could be effective in improving the balance ability and fall prevention in elderly women.

Effect of Tiger Step on Lower Extremities during Uphill Walking (오르막보행 시 타이거스텝 하지 움직임에 미치는 영향)

  • Kang, Jihyuk;Yoon, Sukhoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.1
    • /
    • pp.17-23
    • /
    • 2022
  • Objective: The aim of this study was to investigate the effect Tiger-step walking on the movement of the lower extremities during walking. Method: Twenty healthy male adults who had no experience of musculoskeletal injuries on lower extremities in the last six months (age: 26.85 ± 3.28 yrs, height: 174.6 ± 3.72 cm, weight: 73.65 ± 7.48 kg) participated in this study. In this study, 7-segments whole-body model (pelvis, both side of thigh, shank and foot) was used and 29 reflective markers and cluster were attached to the body to identify the segments during the gait. A 3-dimensional motion analysis with 8 infrared cameras and 7 channeled EMG was performed to find the effect of tigerstep on uphill walking. To verify the tigerstep effect, a one-way ANOVA with a repeated measure was used and the statistical significance level was set at α=.05. Results: Firstly, Both Tiger-steps showed a significant increase in stance time and stride length compared with normal walking (p<.05), while both Tiger-steps shown significantly reduced cadence compared to normal walking (p<.05). Secondly, both Tiger-steps revealed significantly increased in hip and ankle joint range of motion compared with normal walking at all planes (p<.05). On the other hand, both Tiger-steps showed significantly increased knee joint range of motion compared with normal walking at the frontal and transverse planes (p<.05). Lastly, Gluteus maximus, biceps femoris, medial gastrocnemius, tibialis anterior of both tiger-step revealed significantly increased muscle activation compared with normal walking in gait cycle and stance phase (p<.05). On the other hand, in swing phase, the muscle activity of the vastus medialis, biceps femoris, tibialis anterior of both tiger-step significantly increased compared with those of normal walking (p <.05). Conclusion: As a result of this study, Tiger step revealed increased in 3d range of motion of lower extremity joints as well as the muscle activities associated with range of motion. These findings were evaluated as an increase in stride length, which is essential for efficient walking. Therefore, the finding of this study prove the effectiveness of the tiger step when walking uphill, and it is thought that it will help develop a more efficient tiger step in the future, which has not been scientifically proven.

Coordinated Intra-Limb Relationships and Control in Gait Development Via the Angle-Angle Diagram (보행 시 연령에 따른 하지 관절 내 운동학적 협응과 제어)

  • Lee, Kyung-Ok
    • Korean Journal of Applied Biomechanics
    • /
    • v.14 no.3
    • /
    • pp.17-35
    • /
    • 2004
  • The purpose of this study is to explain developmental process of gait via angle-angle diagram to understand how coordinated relationships and control change with age. Twenty four female children, from one to five years of age were the test subjects for this study, and their results were compared to a control group consisting of twenty one adult females. The Vicon 370 CCD camera, VCR, video timer, monitor, and audio visual mixer was utilized to graph the gait cycle for all test subjects. Both coordinated Intra-limb relationships, and range of motion and timing according to quadrant were explained through the angle angle diagram. Movement in the sagittal plane showed both coordinated relationships and control earlier than movement in the coronal or transverse plane. In the sagittal plane, hip and Knee coordinated relationships developed first (from one year of age.) Coordinated relationships in the Knee and ankle and hip and ankle developed next, respectively. Both hip and ankle and knee and ankle development were inhibited by the inability of children to completely perform plantar flexion during the swing and initial double limb support phases. Children appeared to compensate for this by extending at their hip joint more than adults during the third phase, final double limb support. In many cases the angle angle diagram for children had a similar shape as adult's angle angle diagram. This shows that children can coordinate their movements at an early age. However, the magnitudes and timing of children's angle angle diagrams still varied greatly from adults, even at five years of age. This indicates that even at this age, children still do not possess full control of their movements.

Applicability of Hammer-Peening Treatment for Fatigue Life Improvement of Fatigue Damaged Weld Joints (피로손상된 용접이음의 피로수명 향상을 위한 햄머피닝 처리법의 적용)

  • Kim, In Tae;Park, Min Ho;Cheung, Jin Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.48-55
    • /
    • 2013
  • In this study, fatigue tests were performed on longitudinal out-of-plane gusset fillet welded joints and transverse non-load-carrying cruciform rib fillet welded joints, and then applicability of hammer-peening treatment on improvement of fatigue life for fatigue damaged weld joints were investigated. Fatigue tests were carried out on three types of gusset and rib welded specimens: as-welded specimens, post-weld hammer peened specimens and hammer peened specimens at 50% of as-welded specimen's fatigue life. Before and after hammer peening treatment, the geometry of weld toes and surface stresses near weld toes were measured. As a result of hammer peening treatment, compressive residual stresses of 30-83MPa were introduced near weld toes of the gusset and rib welded joints, and 130% increase in fatigue life and fatigue limit of the welded joints could be realized by hammer peening treatment at 50% fatigue life of as-welded conditions.

An Experimental Study on Fatigue Life Evaluation of Welded Joints under Storm Loading (스톰 하중을 받는 용접 구조물의 피로 수명 평가에 대한 실험 연구)

  • Yoo, Chang-Hyuk;Kim, Kyung-Su;Suh, Yong-Suk;Shim, Yong-Lae;Ha, Yeong-Su;You, Won-Hyo;Choi, Hyun-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.99-108
    • /
    • 2012
  • In this paper, fatigue tests are conducted for the specimens with longitudinal and transverse attachment under variable amplitude axial loading based on storm model. Considered loadings include repeated single storm, 6 or 8 storms randomly, and storms including calm sea condition while the mean stress and the maximum stress of loadings are changed. The effect of three variables are investigated; root mean square(RMS) value of stress amplitude, mean stress shift and maximum stress, which can characterize storm loading on fatigue life. In addition, experiments including calm sea loading are also carried out to investigate the effect of calm sea state. Test results are evaluated and compared with DNV-CN2005 and Matsuoka's method for the estimation of crack initiation and propagation life. To verify the validity of the criteria, the measured crack initiation lifes are compared with the specific crack length 15mm, which are calculated with beach marks.

The Control of Flexible Robot Arm using Adaptive Control Theory (적응제어 이론을 이용한 유연한 로봇팔의 제어)

  • Han, Jong-Kil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1139-1144
    • /
    • 2012
  • The ration of payload to weight of industrial robot amounts form 1:10 to 1:30. Compared with man who have a ration of 3:1, it is very low. One of the goals for the next generation of robots will be a ration. This might be possible only by developing lightweight robots. When two-link flexible arm is rotated about an joint axis, transverse vibration may occur. In this paper, vibration dynamics of flexible arm is modeled by using Bernoulli-Euler beam theory and Lagrange equation. Using the fact that matrix $\dot{D}-2C$ is skew symmetric, new controllers which have a simplified structure with less computational burden is proposed by using Lyapunov stability theory. We propose deterministic and adaptive control laws for two link flexible arm, and the validity of the proposed control scheme is shown in computer simulation for two-link flexible arm.

Two Part Triplane Fracture with Extention through Medial Malleolus (Four Cases Report) (족관절 내과를 침범한 두 부분 삼면 골절(4예 보고))

  • Cha, Seung-Do;Kim, Hyung-Soo;Chung, Soo-Tae;Yoo, Jeong-Hyun;Park, Jai-Hyung;Kim, Joo-Hak;Kim, Yong-Hoon
    • Journal of Korean Foot and Ankle Society
    • /
    • v.13 no.2
    • /
    • pp.179-183
    • /
    • 2009
  • The triplane fracture has been described as a fracture of the distal tibial epiphysis occurring across three planes-sagittal, transverse and coronal. The characteristic pattern of fusion of distal tibial epiphysis explains the special configuration of the fragments in the triplane fracture. According to Dias-Tachdjian classification, triplane fracture is classified two part fracture, three part fracture, four part fracture and two part fracture with extension to the medial malleolus. Among four types, two part triplane fracture with extension to the medial malleolus is a relatively rare injury and generally is not treated by closed reduction. Such fractures should have an anatomic reduction and adequate fixation to restore the joint congruity and obtain an anatomic reduction of the growth plate to prevent a future growth deformity. This is usually best accomplished with an open reduction and screw fixation or k-wire fixation. We experienced two part triplane fracture with extension to medial malleolus and check the CT to define the extent of the injury completely. And then we underwent open reduction and screw fixation for the fracture. As a result, we present four cases of two part triplane fracture with extension with review of related literatures.

  • PDF

A Case Study of Concrete Pavement Deterioration by Alkali-Silica Reaction in Korea

  • Hong, Seung-Ho;Han, Seung-Hwan;Yun, Kyong-Ku
    • International Journal of Concrete Structures and Materials
    • /
    • v.1 no.1
    • /
    • pp.75-81
    • /
    • 2007
  • The concrete pavement of the Seohae Highway in Korea has suffered from serious distress, only four to seven years after construction. Deterioration due to Alkali-Silica Reaction (ASR) has seldom been reported per se in Korea, because the aggregate used for the cement concrete has been considered safe against alkali-silica reaction so far. The purpose of this study is to examine the deterioration caused by an alkali-silica reaction of concrete pavement in Korea. The investigation methods included visual inspection and Automatic Road Analyzer (ARAN) analysis of surface cracks, coring for internal cracks, stereo microscopic analysis, scanning electronic microscope (SEM) analysis, and electron dispersive X-ray spectrometer (EDX) analysis. The results are presented as follows: the crack pattern of the concrete pavement in Korea was longitudinal cracking, map cracking or D-cracking. Local areas of damage were noticed four to five years after construction. The cracks started from edges or joints and spread out to slabs. The most intensive cracking was observed at the intersection of the transverse and longitudinal joints. Where cracking was the most intense, pieces of concrete and aggregate had spalled away from top surface and joint interface area. The progress of deterioration was very fast. The reaction product of alkali-silica gel was clearly identified by its generally colorless, white, or very pale yellow hue seen through a stereo optical microscopy. The typical locations of the reaction product were at the interface between aggregate and cement paste in a shape of a rim, within aggregate particles in the cracks, and in the large void in the cement paste. Most of the white products were found at interface or internal aggregates. SEM and EDX analysis confirmed that the white gel was a typical reaction product of ASR. The ASR gel in Korea mainly consisted of Silicate (Si) and Potassium (K) from the cement. The crack in the concrete pavement was caused by ASR. It seems that Korea is no longer safe from alkali-silica reaction.

RELATIVE POSITION OF MANDIBULAR CONDYLE AND COMPARISON OF REPRODUCIBILITY UTILIZING DIFFERENT CENTRIC RELATION RECORD TAKING METHODS (중심위 교합채득 방법에 따른 하악과두의 상대적 위치와 재현도 비교에 관한 연구)

  • Mun, Heoung-Youp;Hwang, Hyeon-Shik
    • The korean journal of orthodontics
    • /
    • v.24 no.4 s.47
    • /
    • pp.945-956
    • /
    • 1994
  • In the past the jaw and occlusal relationship in centric occlusion were merely considered in case of orthodontic diagnosis and treatment planning. As the fact that functional disturbance of the temporomandibular joint may be caused by occlusal interference was recognized, the importance of functional occlusion and centric relation is emphasized today. Known the importance of centric relation, there are various opinions about definition of centric relation and its taking methods. The purpose of this study was to investigate the relative centric condyle position and to compare the reproducibility of the recordings utilizing different centric relation records obtained by different taking methods. The 15 adults with normal occlusion were participated in this study. Every four centric relation records were taken in each of three methods - leaf gauge, Dawson and myomonitor method. Then the relative centric condyle position, the distance between the condylar position in centric occlusion and the position in centric relation and the reproducibility were studied using SAM 2 articulator and mandibular position indicator. The results were as follows ; 1. The trend of condyle position was different depending on centric relation taking methods. 2. The position of condyle in centric relation by leaf gauge and Dawson methods was superior to that by myomonitor method, and the position by myomonitor method was relatively antero-inferior. 3. The distance between the condylar positions in centric occlusion and the position in centric relation was longest in myomonitor method. 4. The reproducibility had little differences in transverse direction among three methods, while leaf gauge method showed the highest reproducibility and myomonitor method did the lowest reproducibility in antero-posterior and supero-inferior direction.

  • PDF