• Title/Summary/Keyword: transportation optimization

검색결과 434건 처리시간 0.028초

교차로의 특성을 고려한 도로선형최적화 (Alignment Optimization Considering Characteristics of Intersections)

  • KIM, Eungcheol;SON, Bongsoo;CHANG, Myungsoon
    • 대한교통학회지
    • /
    • 제20권4호
    • /
    • pp.109-122
    • /
    • 2002
  • 본 연구에서는 교차로의 비용 및 특성을 고려한 도로선형최적화 모형을 유전자 알고리즘(Genetic Algorithms)을 이용하여 개발하였다. 기존의 도로선형최적화 모형은 교차로 특성을 고려하지 못해서 실제 적용에 심대한 문제점을 내재하고 있다. 본 논문에서는 특정 도로선형에 교차로 건설의 필요가 있을 경우, 민감(Sensitive)하고 지배적인(Dominating) 교차로 비용 항목들 즉, 토공비용, 보상비, 포장비, 사고비용, 지체 및 연료소모비용 등의 산정이 시도되었다. 또한 비교적 우수한 도로선형 대안을 유전자 알고리즘을 이용한 탐색과정 중에서 비효율적으로 강제 퇴화시키는 단점 보완을 위한 교차로 국소 최적화 방법(Local Optimization of Intersections)이 개발되어 기존 모형을 보완하였다. 공간상의 도로선형은 매개변수적 묘사(Parametric Representation)를 통하여 구현하였으며 벡터운영(Vector Manipulation)을 통해 교차로비용 산정의 근간인 교차점과 다른 중요점들의 좌표를 찾을 수 있었다. 개발된 교차로 비용산정 모형이 보다 정밀하게 교차로 비용을 산정함이 증명되었으며 궁극적으로는 기존의 최적화 모형의 단점을 보완할 수 있음이 제시되었다. 또한, 새로이 제시된 교차로 국소 최적화 방법이 최적대안 탐색과정의 유연성을 증대하였으며, 결과적으로 효율적인 교차로의 유지에 기여함을 알 수 있었다. 제시된 교차로 국소 최적화 방법은 추후 단일노선이 아닌 도로망 최적화시의 기초를 제시함은 주목할 만 하다. 두개의 예제에서 도출된 최적노선 및 교차로 비용 등의 검토 결과, 도로상의 교차로 건설비용은 도로선형 최적화에 큰 영향을 미치는 실질적이며 민감한 비용 항목임이 검증되었으며 이는 도로선형최적화 모형이 교차로 비용을 반드시 검토 및 평가할 수 있어야 함을 반증한다.

수송공정을 고려한 다분기 공정-저장조 망구조의 최적설계 (Optimal Design of Multiperiod Process-Inventory Network Considering Transportation Processes)

  • 서근학;이경범
    • 제어로봇시스템학회논문지
    • /
    • 제18권9호
    • /
    • pp.854-862
    • /
    • 2012
  • The optimal design of batch-storage network by using periodic square wave model provides analytical lot sizing equations for a complex supply chain network characterized as multi-supplier, multi-product, multi-stage, non-serial, multi-customer, cyclic system including recycling and/or remanufacturing. The network structure includes multiple currency flows as well as material flows. The processes are represented by multiple feedstock/product materials with fixed composition which are very suitable for production processes. In this study, transportation processes that carry multiple materials with unknown composition are added and the time frame is changed from single period into multiple periods in order to represent nonperiodic parameter variations. The objective function of the optimization involves minimizing the opportunity costs of annualized capital investments and currency/material inventories minus the benefit to stockholders in the numeraire currency. The expressions for the Kuhn-Tucker conditions of the optimization problem are reduced to a multiperiod subproblem for average flow rates and analytical lot-sizing equations. The multiperiod lot sizing equations are different from single period ones. The effects of corporate income taxes, interest rates and exchange rates are incorporated.

보행자-차량 충돌안전기준 매개변수 최적화 방법론 개발 및 적용 (Methodology for Optimizing Parameters of Vehicle Safety Regulation on Pedestrian Protection)

  • 오철;김범일;강연수;윤영한
    • 한국자동차공학회논문집
    • /
    • 제14권5호
    • /
    • pp.186-194
    • /
    • 2006
  • Traffic accident involved with the vulnerable pedestrian is one of the significant concerns, which has higher possibility of fatality than any other accident types. Worldwide significant efforts have been made to establish a vehicle safety regulation, which is internationally agreed, in order to reduce pedestrian casualties in pedestrian-vehicle collisions. One of the key issues in deriving the regulation is how to effectively select the parameter values associated with the regulation. This study firstly develops a method to optimize parameter values. An optimizing problem in terms of maximizing safety benefits, which are life-saving effects by the regulation, is formulated. Extensive actual accident data analysis and simulations are conducted to establish several statistical models to be used in the proposed optimization procedure. A set of parameter values that can produce maximizing life-saving effects is presented as the outcome of this study. It is expected that the proposed method would play a significant role in determining parameters as a decision support tool toward ensuring better pedestrian safety.

농산물의 가격특성을 고려한 최적경로 선정모델 개발 (Development of An Optimal Routes Selection Model Considering Price Characteristics of Agricultural Products)

  • Suh, Kyo;Lee, Jeong-Jae;Huh, Yoo-Man;Kim, Han-Joong;Yi, Ho-Jae
    • 한국농공학회논문집
    • /
    • 제46권1호
    • /
    • pp.121-131
    • /
    • 2004
  • Transportation and logistics of agricultural products have been one of the major interests of many researches. Most of researches have been limited to presuming these as a first dimensional process or considering only economic value of agricultural products at each stage of logistics. However, the particular characteristics of agricultural products, such as quality change during transportation or extensively scattered origins, require examining these problems as a whole system. Network model has been adopted to represent nodes, which stand for spatial location of demand and supply of agricultural products, and communication between these nodes. Based on network theory and advanced marketing potential function, an optimal routes selection model is developed. The model employed network simplex method for routes optimization. The application of the model focused on transportation network organization to reflect different market prices for different locations and resulted in optimum routes and profit improvement of the applied agricultural product.

정상운반조건 해석을 위한 사용후핵연료집합체 유한요소모델 최적화 (Optimization of Spent Nuclear Fuel Assembly Finite Element Model for Normal Transportation Condition Analysis)

  • 김민식;박민정;장윤석
    • 한국압력기기공학회 논문집
    • /
    • 제19권2호
    • /
    • pp.163-170
    • /
    • 2023
  • Since spent nuclear fuel assemblies (SFA) are transported to interim storage or final disposal facility after cooling the decay heat, finite element analysis (FEA) with simplification is widely used to show their integrity against cladding failure to cause dispersal of radioactive material. However, there is a lack of research addressing the comprehensive impact of shape and element simplification on analysis results. In this study, for the optimization of a typical pressurized water reactor SFA, different types of finite element models were generated by changing number of fuel rods, fuel rod element type and assembly length. A series of FEA in use of these different models were conducted under a shock load data obtained from surrogate fuel assembly transportation test. Effects of number of fuel rods, element type and length of assembly were also analyzed, which shows that the element type of fuel rod mainly affected on cladding strain. Finally, an optimal finite element model was determined for other practical application in the future.

교통분포, 수단선택 및 교통할당의 결합모형 (A Combined Model of Trip Distribution, Mode Choice and Traffic Assignment)

  • 박태형
    • 산업공학
    • /
    • 제15권4호
    • /
    • pp.474-482
    • /
    • 2002
  • In this paper, we propose a parametric optimization approach to simultaneously determining trip distribution, mode choice, and user-equilibrium assignment. In our model, mode choice decisions are based on a binomial logit model and passenger and cargo demands are divided into appropriate mode according to the user equilibrium minimum travel time. Underlying network consists of road and rail networks combined and mode choice available is auto, bus, truck, passenger rail, and cargo rail. We provide an equivalent convex optimization problem formulation and efficient algorithm for solving this problem. The proposed algorithm was applied to a large scale network examples derived from the National Intermodal Transportation Plan (2000-2019).

생애주기비용을 고려한 PSC-I형 교량의 최적설계 (Optimal Design of PSC-I Girder Bridge Considering Life Cycle Cost)

  • 박장호;신영석
    • 한국안전학회지
    • /
    • 제24권5호
    • /
    • pp.48-56
    • /
    • 2009
  • This paper presents the procedure for the optimal design of a PSC-I girder bridge considering life cycle cost (LCC). The load carrying capacity curves for the concrete deck, PSC-I girder and $\pi$-type pier were derived and used for the estimate of service lives. Total life cycle cost for the service life was calculated as sum of initial cost, damage cost, maintenance cost, repair and rehabilitation cost, user cost, and disposal cost. The advanced First Order Second Moment method was used to estimate the damage cost. The optimization method was applied to the design of PSC-I girder bridge. The objective function was set to the annual cost, which is defined by dividing the total life cycle cost by the service life, and constraints were formulated on the basis of Korean Standards. The optimal design was performed for various service lives and the effects of design factors were investigated.

나노실버 투명전도소재 보호필름의 개발 및 공정 최적화와 실험 계획법을 이용한 검증 (Commercialization & Process Optimization of Protective Film on Nano Silver Transparent Conductive Substrate by Means of Large Scale Roll-to-Roll Coating and Experimental Design)

  • 박광민;이지훈
    • 한국전기전자재료학회논문지
    • /
    • 제28권12호
    • /
    • pp.813-820
    • /
    • 2015
  • We have studied commercialization and process optimization of protective film on transparent conductive coated substrate, nano silver on flexible PET (poly ethylene terephthalate), by means of roll-to-roll micro-gravure coater. Nanosilver on flexible PET substrate is potential materials to replace ITO (indium tin oxide). Protective film is most important to maintain unique silver pattern on top of transparent PET. PSA pressure sensitive adhesives) was developed solely for nano silver on PET and protective film was successfully laminated. We have optimized all process conditions such as coating thickness, line speed and aging time & temperature via experimental design. Transparent conductive film and its protective film developed in this research are commercially available at this moment.

제한된 조건하에서의 최적생산-분배결정 모델에 관한 연구 (A study on optimization model for an industrial production-distribution problem with consideration of a restricted transportation time)

  • 임석진;김경섭;박면웅
    • 한국경영과학회:학술대회논문집
    • /
    • 대한산업공학회/한국경영과학회 2002년도 춘계공동학술대회
    • /
    • pp.463-468
    • /
    • 2002
  • Recently, a multi-facility, multi-product and multi-period industrial problem has been widely investigated in Supply Chain Management(SCM). One of the key issues in the current SCM research area involves reducing both production and distribution costs. We have developed an optimization model to tackle the above problems under the restricted conditions such as transportation time and a zero inventory. The model can be used to deride an appropriate factory and assign an optimal output the factory yields. This paper deals with the main idea of the proposed methodology in depth.

  • PDF

인더스트리얼 캐리어를 위한 통합 선대관리 지원시스템 (Integrated Fleet Management Support System for Industrial Carrier)

  • 김시화;허강이
    • 한국항해학회지
    • /
    • 제23권4호
    • /
    • pp.63-76
    • /
    • 1999
  • This paper aims at developing an integrated fleet management support system for industrial carriers who usually control the vessels of their own or on a time charter to minimize the cost of shipping their cargoes. The work is mainly concerned with the operational management problem of the fleet owned by a major oil company, a typical industrial carrier. The optimal fleet management problem for the major oil company can be divided into two phase problem. The front end corresponds to the production operation problem of the transportation of crude oil, the refinery operation, and the distribution of product oil to comply with the demand of the market. The back end is to tackle the fleet scheduling problem to meet the seaborne transportation demand derived from the front end. Relevant optimization models for each phase are proposed and described briefly. Then a user-friendly integrated fleet management support system is built based on the proposed optimization models for both ends under Windows environment. A case study reflecting the practices of fleet management problem for the major oil company is carried out by using the system.

  • PDF