• Title/Summary/Keyword: transport number

Search Result 1,358, Processing Time 0.026 seconds

A Chronological and Legal Study on Mitigation of Height Restriction in Flight Safety Zone around Airports - Mostly Regarding Civilian Airports - (공항 비행안전구역 고도완화의 연혁적 고찰과 해결방안에 관한 정책적·법적 고찰 - 민간 공항 중심으로 -)

  • Shin, Sung-Hwan
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.35 no.2
    • /
    • pp.225-246
    • /
    • 2020
  • More than technical or academic matter, mitigation of height restriction around airports is about up-dating out-dated policies that have not kept up with rapidly developing aircraft and air traffic control technologies. Above all, instead of calling out 'flight safety' that the public do not comprehend, it is important to examine and carry out measures that can protect people's right of property. MOLIT(Ministry of Land, Infrastructure, and Transport) after reviewing ICAO's Obstacle Limitation Surface TF, made an announcement to provide further plans that would apply to contracting states from 2026. However, residents of redevelopment areas near Kimpo international airport asserted that MOLIT's policy overlooks the reality of the redevelopment zone. ICAO, UN's specialized agency for civilian aviation, recommends in Annex 14, 4.2.4 that contracting states conduct an aeronautical study to determine the flight safety of horizontal surface(45m), excluding approach surface, and to mitigate height restrictions if no threat is found. Numerous countries including the United States have been following this recommendation and have been able to effectively protect people's right of property, whereas the South Korean government have not following it so far. The number of height restriction mitigation cases in the recent three months (2019. 7. 15~10. 14.) FAA of the United States have allowed after conducting an aeronautical study reaches 14,706. Japan and Taiwan also reconstruct airspace around airports in metropolitan areas in order to protect people's right of property. Just as the United States is following, MLIT should follow ICAO's recommendation in Annex 14. 4.2.4(Vol. 1. Airport Construction / Operation) and protect people's right of property by first applying aeronautical studies to the horizontal surface(45m) of flight safety zones until the specifics of ICAO's 2026 TF materialize.

Ameliorating Effect of $\textrm{Ca}({NO_3})_2$ or $\textrm{CaCl}_2$ on the Growth and Yield of NaCl-Stressed Tomato Grown in Plastic Pots Filled with Soil (NaCl 스트레스를 받은 토마토의 생육 향상을 위한 $\textrm{Ca}({NO_3})_2$$\textrm{CaCl}_2$ 처리 효과)

  • 강경희;권기범;최영하;김회태;이한철
    • Journal of Bio-Environment Control
    • /
    • v.11 no.3
    • /
    • pp.127-132
    • /
    • 2002
  • Enhanced supply of $Ca^{2+}$ as well as NO$_3$$^{[-10]}$ is known to restrict the uptake of the Na$^{+}$ and Cl$^{[-10]}$ ion and ameliorate growth under saline conditions. This test was conducted to investigate the ameliorating effects of Ca(NO$_3$)$_2$ or CaCl$_2$ on the growth and yield of NaCl-stressed tomato plants grown in plastic pot filled with soil. All treatments except for the control were supplied with 80 mM NaCl fur two weeks after transporting. The saline solutions with nutrient were supplemented with either 0, 10 or 20 mM Ca(NO$_3$)$_2$ and either 0, 10 or 20 mM CaCl$_2$ during harvesting time from two weeks after transporting. Ca(NO$_3$)$_2$ or CaCl$_2$ application enhanced the growth such as plant height, fresh weight, dry weight, fruit number, and fruit weight, and yield of NaCl-stressed tomato, and also their effects increased greater as concentration of supplemented Ca(NO$_3$)$_2$ or CaCl$_2$increased. Yield increased in 20 mM Ca(NO$_3$)$_2$ compared with the others except fur the control. Photosynthetic rate in Ca treatments was lower than that of the control, but higher than that of NaCl treatment. Leaf chlorophyll content was higher in Ca treatments compared with the others, especially in younger leaf, while that was not affected by concentration of supplemented Ca. Ca(NO$_3$)$_2$ or CaCl$_2$ supply increased the $K^{+}$ and $C^{2+}$ concentration of tomato plants, whereas the Na$^{+}$ transport to the leaves was inhibited. There was a strong increase in the $K^{+}$/Na$^{+}$ ratio in plants treated Ca(NO$_3$)$_2$, or CaCl$_2$. Cl$^{[-10]}$ content of plants was decreased by supplemental Ca(NO$_3$)$_2$ but Cl$^{[-10]}$ was increased in plants with CaCl$_2$compared with Ca(NO$_3$)$_2$. N concentration in plants of tomato increased with enhanced Ca(NO$_3$)$_2$ or CaCl$_2$supply, In conclusion, our study confirms the potential of Ca(NO$_3$)$_2$ or CaCl$_2$to alleviate NaCl-induced growth reductions in tomato.

Chemical Characteristics of PM1 using Aerosol Mass Spectrometer at Baengnyeong Island and Seoul Metropolitan Area (백령도 및 서울 대기오염집중측정소 에어로졸 질량 분석기 자료를 이용한 대기 중 에어로졸 화학적 특성 연구)

  • Park, Taehyun;Ban, Jihee;Kang, Seokwon;Ghim, Young Sung;Shin, Hye-Jung;Park, Jong Sung;Park, Seung Myung;Moon, Kwang Joo;Lim, Yong-Jae;Lee, Min-Do;Lee, Sang-Bo;Kim, Jeongsoo;Kim, Soon Tae;Bae, Chang Han;Lee, Yonghwan;Lee, Taehyoung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.3
    • /
    • pp.430-446
    • /
    • 2018
  • To improve understanding of the sources and chemical properties of particulate pollutants on the Korean Peninsula, An Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine particle ($NR-PM_1$) from 2013 to 2015 at Baengnyeong Island and Seoul metropolitan area (SMA), Korea. The chemical composition of $NR-PM_1$ in Baengnyeong island was dominated by organics and sulfate in the range of 36~38% for 3 years, and the organics were the dominant species in the range of 44~55% of $NR-PM_1$ in Seoul metropolitan area. The sulfate was found to be more than 85% of the anthropogenic origin in the both areas of Baengnyeong and SMA. Ratio of gas to particle partition of sulfate and nitrate were observed in both areas as more than 0.6 and 0.8, respectively, representing potential for formation of additional particulate sulfate and nitrate. The high-resolution spectra of organic aerosol (OA) were separated by three factors which were Primary OA(POA), Semi-Volatility Oxygenated Organic Aerosol (SV-OOA), and Low-Volatility OOA(LV-OOA) using positive matrix factorization (PMF) analysis. The fraction of oxygenated OA (SOA, ${\fallingdotseq}OOA$=SV-OOA+LV-OOA) was bigger than the fraction of POA in $NR-PM_1$. The POA fraction of OA in Seoul is higher than it of Baengnyeong Island, because Seoul has a relatively large number of primary pollutants, such as gasoline or diesel vehicle, factories, energy facilities. Potential source contribution function (PSCF) analysis revealed that transport from eastern China, an industrial area with high emissions, was associated with high particulate sulfate and organic concentrations at the Baengnyeong and SMA sites. PSCF also presents that the ship emissions on the Yellow Sea was associated with high particulate sulfate concentrations at the measurement sites.

Management of Vascular Injuries to the Extremities after Trauma (외상 후 사지 혈관손상의 치료)

  • Kim, Han Yong;Park, Jae Hong;Kim, Myoung Young;Hwang, Sang Won
    • Journal of Chest Surgery
    • /
    • v.42 no.1
    • /
    • pp.46-52
    • /
    • 2009
  • Background: Vascular injuries to the extremities are potentially devastating and they can lead to limb loss and mortality if they are not appropriately managed. The vascular trauma caused by traffic and industrial accidents has recently increased according to the developing industry and transport system in Korea. Early recognition and treatment of these injuries are mandatory to achieve satisfactory outcomes. Material and Method: We retrospective reviewed 43 patients with vascular injuries that were due to blunt and penetrating trauma and they underwent emergency operations from January of 1998 to December of 2006. Result: There were 38 men and 5 women patients with a mean age of $42.0{\pm}16.8$ years (range: 17~77). The cause of vascular injuries were 28 traffic accidents (65%), 6 industrial accidents (14%), 6 glass injuries (14%) and 3 knife injuries (7%). The average time from admission to the operating room was $319.0{\pm}482.2$ minutes (range: 27~2,400 minutes). The average time from admission to discharge was $53.1{\pm}56.0$ days (range: 2~265 days). The anatomic injuries included the femoral artery in 16 cases (37%), the popliteal artery in 8 cases (19%), the brachial artery in 8 cases (19%), and the subclavian and axillary arteries in 7 cases (16%). The associated injuries were 23 bone fractures (53%), 18 muscle injuries (42%) 5 nerve injuries (12%) and 11 vein injuries (26%). The operation methods were 20 end to end anastomoses (46%), 16 interposition grafts (36%), 2 repairs with using patches (5%) and 5 others (12%). The number of amputations and cases of mortality were 3 cases (7%) and 4 cases (9%), respectively. Conclusion: Minimizing ischemia is an important factor for maximizing salvage of extremities. Prompt diagnosis and treatment can reduce the amputation and mortality rates.

Effect of Blue Color-deficient Sunlight on the Productivity and Cold Tolerance of Crop Plants II. On the unsaturation of mitochondrial phospholipid (청색파장(靑色波長)영역이 결여된 태양광이 작물(作物)의 생산성(生産性) 및 내냉성(耐冷性)의 향상에 미치는 효과 II. 미토콘드리아막(膜)의 인지질불포화도(燐脂質不飽和度)의 증가)

  • Jung, Jin;Kim, Chang-Sook
    • Korean Journal of Environmental Agriculture
    • /
    • v.5 no.2
    • /
    • pp.149-155
    • /
    • 1986
  • The fatty acid compositions of phospholipids extracted from leaves and leaf mitochondria, which were sampled from several horicultural plants grown under blue color-deficient sunlight (BCDS), were determined and compared with those from plants grown under natural white colored sunlight(WCS). It was found that the mitochondria isolated from plants grown under BCDS contained phospholipid whose degree of unsaturation in unit of number of double bonds per lipid molecule was remarkably higher than that from plants grown under WCS, the relative increment being $8{\sim}49%$. This was significantly larger than the relative increment, $4{\sim}8%$ for total phospholipid extracted from whole leaves grown under BCDS campared to WCS. This observation demonstrated that the blue light effect of sunlight on the chemical property of cellular membranes, as long as it was concerned with fatty acid composition, arose mainly at the mitochondrial membrane. Also observing that the degree of unsaturation of mitochondrial phospholipid was much lower than that of total phospholipid, it was interpreted that this was the consequence of rather active oxidative destruction of lipid-fatty acid components occuring in mitochondrial membrane by the reactive oxygen species, especially superoxide($O_2-$), which was known to be produced in mitochondrial inner membrane through the side reactions of the respiratory electron transport chain and also probably through the photosensitized reaction involving oxygen induced by blue colored light. Thus, it may be tentatively concluded that the extent of photosensitization in mitochondrial membrane could be considerably reduced under BCDS resulting in lowering of the $O_2-$ level in the respirating organelle The possible involvement of photodynamic action in membrane oxidation was also indicated by the fact that the typical fat-soluble antioxidant, ${\alpha}-tocopherol$, was found to be contained on a higher level in leaves under BCDS than those under WCS.

  • PDF

A Study on Fuel Quality Characteristics of F-T Diesel for Production of BTL Diesel (BTL 디젤 생산을 위한 F-T 디젤의 연료적 특성 연구)

  • Kim, Jae-Kon;Jeon, Cheol-Hwan;Yim, Eui-Soon;Jung, Choong-Sub;Lee, Sang-Bong;Lee, Yun-Je;Kang, Myung-Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.29 no.3
    • /
    • pp.450-458
    • /
    • 2012
  • In order to reduce the effects of greenhouse gas (GHG) emissions, the South Korean government has announced a special platform of technologies as part of an effort to minimize global climate change. To further this effort, the Korean government has pledged to increase low-carbon and carbon neutral resources for biofuel derived from biomass to replace fossil and to decrease levels of carbon dioxide. In general, second generation biofuel produced form woody biomass is expected to be an effective avenue for reducing fossil fuel consumption and greenhouse gas (GHG) emissions in road transport. It is important that under the new Korean initiative, pilot scale studies evolve practices to produce biomass-to-liquid (BTL) fuel. This study reports the quality characteristics of F-T(Fischer-Tropsch) diesel for production of BTL fuel. Synthetic F-Tdiesel fuel can be used in automotive diesel engines, pure or blended with automotive diesel, due to its similar physical properties to diesel. F-T diesel fuel was synthesized by Fischer-Tropsch (F-T) process with syngas($H_2$/CO), Fe basedcatalyst in low temperature condition($240^{\circ}C$). Synthetic F-T diesel with diesel compositions after distillation process is consisted of $C_{12}{\sim}C_{23+}$ mixture as a kerosine, diesel compositions of n-paraffin and iso-paraffin compounds. Synthetic F-T diesel investigated a very high cetane number, low aromatic composition and sulfur free level compared to automotive diesel. Synthetic F-T diesel also show The wear scar of synthetic F-T diesel show poor lubricity due to low content of sulfur and aromatic compounds compared to automotive diesel.

Dispersion of Air Pollutants from Ship Based Sources in Incheon Port (인천항의 선박오염원에서 배출된 대기오염물질의 확산)

  • Kim, Kwang-Ho;Kwon, Byung Hyuk;Kim, Min-Seong;Lee, Don-Chool
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.5
    • /
    • pp.488-496
    • /
    • 2017
  • Emissions of pollutants from ship-based sources are controlled by the International Maritime Organization (IMO). Since pollutants emitted from ship may be dispersed to the land, controlling emissions from ships is necessary for efficient air quality management in Incheon, where exposure to ship-based pollution is frequent. It has been noted that the ratios of air pollutant emissions from coastal areas to inland areas are about 14% for NOx and 10% for SOx. The air quality of coastal urban areas is influenced by the number of ships present and the dispersion pattern of the pollutants released depending on the local circulation system. In this study, the dispersion of pollutants from ship-based sources was analyzed using the numerical California Puff Model (CALPUFF) based on a meteorological field established using the Weather Research and Forecasting Model (WRF). Air pollutant dispersion modeling around coastal urban regions such as Incheon should consider point and line sources emitted from both anchored and running ships, respectively. The total average NOx emissions from 82-84 ships were 6.2 g/s and 6.8 g/s, entering and leaving, respectively. The total average SOx emissions from 82-84 ships, entering and leaving, were 3.6 g/s and 5.1 g/s, respectively. The total average emissions for NOx and SOx from anchored ships were 0.77 g/s and 1.93 g/s, respectively. Due to the influence of breezes from over land, the transport of pollutants from Incheon Port to inland areas was suppressed, and the concentration of NOx and SOx inland were temporarily reduced. NOx and SOx were diffused inland by the sea breeze, and the concentration of NOx and SOx gradually increased inland. The concentration of pollutants in the area adjacent to Incheon Port was more influenced by anchored ship in the port than sea breezes. We expect this study to be useful for setting emission standards and devising air quality policies in coastal urban regions.

Role of Wetland Plants as Oxygen and Water Pump into Benthic Sediments (퇴적물내의 산소와 물 수송에 관한 습지 식물의 역할)

  • Choi, Jung-Hyun;Park, Seok-Soon
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.4 s.109
    • /
    • pp.436-447
    • /
    • 2004
  • Wetland plants have evolved specialized adaptations to survive in the low-oxygen conditions associated with prolonged flooding. The development of internal gas space by means of aerenchyma is crucial for wetland plants to transport $O_2$ from the atmosphere into the roots and rhizome. The formation of tissue with high porosity depends on the species and environmental condition, which can control the depth of root penetration and the duration of root tolerance in the flooded sediments. The oxygen in the internal gas space of plants can be delivered from the atmosphere to the root and rhizome by both passive molecular diffusion and convective throughflow. The release of $O_2$ from the roots supplies oxygen demand for root respiration, microbial respiration, and chemical oxidation processes and stimulates aerobic decomposition of organic matter. Another essential mechanism of wetland plants is downward water movement across the root zone induced by water uptake. Natural and constructed wetlands sediments have low hydraulic conductivity due to the relatively fine particle sizes in the litter layer and, therefore, negligible water movement. Under such condition, the water uptake by wetland plants creates a water potential difference in the rhizosphere which acts as a driving force to draw water and dissolved solutes into the sediments. A large number of anatomical, morphological and physiological studies have been conducted to investigate the specialized adaptations of wetland plants that enable them to tolerate water saturated environment and to support their biochemical activities. Despite this, there is little knowledge regarding how the combined effects of wetland plants influence the biogeochemistry of wetland sediments. A further investigation of how the Presence of plants and their growth cycle affects the biogeochemistry of sediments will be of particular importance to understand the role of wetland in the ecological environment.

Novel LTE based Channel Estimation Scheme for V2V Environment (LTE 기반 V2V 환경에서 새로운 채널 추정 기법)

  • Chu, Myeonghun;Moon, Sangmi;Kwon, Soonho;Lee, Jihye;Bae, Sara;Kim, Hanjong;Kim, Cheolsung;Kim, Daejin;Hwang, Intae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.3-9
    • /
    • 2017
  • Recently, in 3rd Generation Partnership Project(3GPP), there is a study of the Long Term Evolution(LTE) based vehicle communication which has been actively conducted to provide a transport efficiency, telematics and infortainment. Because the vehicle communication is closely related to the safety, it requires a reliable communication. Because vehicle speed is very fast, unlike the movement of the user, radio channel is rapidly changed and generate a number of problems such as transmission quality degradation. Therefore, we have to continuously updates the channel estimates. There are five types of conventional channel estimation scheme. Least Square(LS) is obtained by pilot symbol which is known to transmitter and receiver. Decision Directed Channel Estimation(DDCE) scheme uses the data signal for channel estimation. Constructed Data Pilot(CDP) scheme uses the correlation characteristic between adjacent two data symbols. Spectral Temporal Averaging(STA) scheme uses the frequency-time domain average of the channel. Smoothing scheme reduces the peak error value of data decision. In this paper, we propose the novel channel estimation scheme in LTE based Vehicle-to-Vehicle(V2V) environment. In our Hybrid Reliable Channel Estimation(HRCE) scheme, DDCE and Smoothing schemes are combined and finally the Linear Minimum Mean Square Error(LMMSE) scheme is applied to minimize the channel estimation error. Therefore it is possible to detect the reliable data. In simulation results, overall performance can be improved in terms of Normalized Mean Square Error(NMSE) and Bit Error Rate(BER).

Electronic Structure and Si L2,3-edge X-ray Raman Scattering Spectra for SiO2 Polymorphs: Insights from Quantum Chemical Calculations (양자화학계산을 이용한 SiO2 동질이상의 전자 구조와 Si L2,3-edge X-선 라만 산란 스펙트럼 분석)

  • Kim, Yong-Hyun;Yi, Yoo Soo;Lee, Sung Keun
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The atomic structures of silicate liquids at high pressure provide insights into the transport properties including thermal conductivities or elemental partitioning behavior between rocks and magmas in Earth's interior. Whereas the local electronic structure around silicon may vary with the arrangement of the nearby oxygens, the detailed nature of such relationship remains to be established. Here, we explored the atomic origin of the pressure-induced changes in the electronic structure around silicon by calculating the partial electronic density of states and L3-edge X-ray absorption spectra of SiO2 polymorphs. The result showed that the Si PDOS at the conduction band varies with the crystal structure and local atomic environments. Particularly, d-orbital showed the distinct features at 108 and 130 eV upon the changes in the coordination number of Si. Calculated Si XAS spectra showed features due to the s,d-orbitals at the conduction band and varied similarly with those observed in s,d-orbitals upon changes in the crystal structures. The calculated Si XAS spectrum for α-quartz was analogous to the experimental Si XRS spectrum for SiO2 glass, implying the overall similarities in the local atomic environments around the Si. The edge energies at the center of gravity of XAS spectra were closely related to the Si-O distance, thus showing the systematic changes upon densification. Current results suggest that the Si L2,3-edge XRS, sensitive probe of the Si-O distance, would be useful in unveiling the densification mechanism of silicate glasses and melts at high pressure.