• Title/Summary/Keyword: transpiration.

Search Result 394, Processing Time 0.035 seconds

Post Infection Physiobiochemical Alteration at Various Intensities of Leaf spot (Myrothecium roridum) in Mulberry

  • Kumar, P.M.Pratheesh;Qadri, S.M.H.;Pal, S.C.;Mishra, A.K.;Urs, S.Raje
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.7 no.2
    • /
    • pp.175-180
    • /
    • 2003
  • Changes in biochemical constituents and physiological alteration were studied in various intensities (1-5%, 6-15%, 16-30%, 31-50% and > 50%) of leaf spot (Myrothecium roridum) on mulberry leaves and compared with healthy leaves. Chlorophyll, total soluble sugar and total protein were decreased (P < 0.01), but total phenol increased due to pathogen infection. Changes in biochemical constituents showed significant correlation with intensity of disease. Chlorophyll ($r^2$= 0.92), and protein (($r^2$= 0.83) possessed negative while phenol (($r^2$= 0.61) possessed positive correlation. Photosynthetic rate, transpiration rate, stomatal conductance, moisture content (%) and physiological water use efficiency (pWUE) were decreased, but stomatal resistance increased in the infected leaves. Physiological parameters also possessed significant (P < 0.01) correlation with disease intensity. Photosynthetic rate (($r^2$= 0.96), transpiration rate ($r^2$=0.88), stomatal conductance (($r^2$= = 0.65), physiological water use efficiency (($r^2$= 0.88) and moisture content (r = 0.85) were negatively but stomatal resistance (($r^2$= 0.75) was positively correlated to disease intensities.

Experiment for the duty of Water in paddy fields of New Variety Tongil (IR667) (신품종 통일 벼(IR667)의 용수량측정시험)

  • Hwang, Eun;Kim, Chul-Kyu
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.4
    • /
    • pp.2439-2444
    • /
    • 1971
  • This experiment is conducted to see the alteration in calculation of amount of duty of water in paddy fields, by the miraculous rice TONG-IL(IR667) made its appearance to us, therefore results obtained were summarized as follow. 1. In comparison with depth of evapo-transpiration and evaporation in the evaporator, the ratio is ET/V=1.84 in clay loam and ET/V=2.00 in loam, the value is larger than any vairety. 2. Comparison by growing periods of rice plants growing period 5 and Ear for mation stage (primor stage) 6 ET/V value grow larger from 3.30 to 3.77. 3. Transpiration ratio is 260.4 in clay loam and 275.0 in loam, two value are less than 300.

  • PDF

Responses of Photosynthetic Characters to Waterlogging in Soybean [Glycine max (L.) Merrill] (과습에 따른 콩 광합성 관련 형질 반응)

  • Lee, Jae-Eun;Kim, Hong-Sig;Kwon, Young-Up;Jung, Gun-Ho;Lee, Chun-Ki;Yun, Hong-Tai;Kim, Chung-Kon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.2
    • /
    • pp.111-118
    • /
    • 2010
  • Stress due to excess water is one of the most limiting factor for soybeans to high yield under wet climates. This study aimed to identify the photosynthetic responses of soybeans to waterlogged growing condition with 5 soybean varieties by waterlogging for 10 days at V5 and R2 stage, respectively. Chlorophyll fluorescence decreased more rapidly at R2 stage waterlogging than at V5 stage waterlogging in all soybean tested varieties. The degree of recovery was much more in Pungsannamulkong and Muhankong( 95~97% of control) than in Jangyeobkong and Myungjunamulkong at 5 days after waterlogging. Photosynthetic rate, transpiration and stomatal conductance were also increased more rapidly in Pungsannamulkong and Muhankong than in Jangyeobkong and Myungjunamulkong after waterlogging irrespective of waterlogging stages. As the result of multiple regression analysis in order to identify the effects of stomatal conductance and transpiration to the photosynthetic rate, the R2 value of stomatal conductance in control and waterlogging treatment was 0.7293 and 0.7582, respectively. If the transpiration, another dependent variable, was added to the regression formula, there was not so big difference in the variation of photosynthetic rate. This result means that if just one factor of them(the stomatal conductance and transpiration) be measured in the case of waterlogged condition, the changes of photosynthetic rate can be estimated.

Studies on Relations between Various Coeffcients of Evapo-Transpiration and Quantities of Dry Matters for Tall-and Short Statured Varieties of Paddy Rice (논벼 장.단간품종의 증발산제계수와 건물량과의 관계에 대한 연구(I))

  • 류한열;김철기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.16 no.2
    • /
    • pp.3361-3394
    • /
    • 1974
  • The purpose of this thesis is to disclose some characteristics of water consumption in relation to the quantities of dry matters through the growing period for two statured varieties of paddy rice which are a tall statured variety and a short one, including the water consumption during seedling period, and to find out the various coefficients of evapotranspiration that are applicable for the water use of an expected yield of the two varieties. PAL-TAL, a tall statured variety, and TONG-lL, a short statured variety were chosen for this investigation. Experiments were performed in two consecutive periods, a seedling period and a paddy field period, In the investigation of seedling period, rectangular galvanized iron evapotranspirometers (91cm${\times}$85cm${\times}$65cm) were set up in a way of two levels (PAL-TAL and TONG-lL varieties) with two replications. A standard fertilization method was applied to all plots. In the experiment of paddy field period, evapotanspiration and evaporation were measured separately. For PAL-TAL variety, the evapotranspiration measurements of 43 plots of rectangular galvanized iron evapotranspirometer (91cm${\times}$85cm${\times}$65cm) and the evaporation measurements of 25 plots of rectangular galvanized iron evaporimeter (91cm${\times}$85cm${\times}$15cm) have been taken for seven years (1966 through 1972), and for TONG-IL variety, the evapotranspiration measurements of 19 plots and the evaporation measurements of 12 plots have been collected for two years (1971 through 1972) with five different fertilization levels. The results obtained from this investigation are summarized as follows: 1. Seedling period 1) The pan evaporation and evapotranspiration during seedling period were proved to have a highly significant correlation to solar radiation, sun shine hours and relative humidity. But they had no significant correlation to average temperature, wind velocity and atmospheric pressure, and were appeared to be negatively correlative to average temperature and wind velocity, and positively correlative to the atmospheric pressure, in a certain period. There was the highest significant correlation between the evapotranspiration and the pan evaporation, beyond all other meteorological factors considered. 2) The evapotranpiration and its coefficient for PAL-TAL variety were 194.5mm and 0.94∼1.21(1.05 in average) respectively, while those for TONG-lL variety were 182.8mm and 0.90∼1.10(0.99 in average) respectively. This indicates that the evapotranspiration for TONG-IL variety was 6.2% less than that for PAL-TAL variety during a seedling period. 3) The evapotranspiration ratio (the ratio of the evapotranspiration to the weight of dry matters) during the seedling period was 599 in average for PAL-TAL variety and 643 for TONG-IL variety. Therefore the ratio for TONG-IL was larger by 44 than that for PAL-TAL variety. 4) The K-values of Blaney and Criddle formula for PAL-TAL variety were 0.78∼1.06 (0.92 in average) and for TONG-lL variety 0.75∼0.97 (0.86 in average). 5) The evapotranspiration coefficient and the K-value of B1aney and Criddle formular for both PAL-TAL and TONG-lL varieties showed a tendency to be increasing, but the evapotranspiration ratio decreasing, with the increase in the weight of dry matters. 2. Paddy field period 1) Correlation between the pan evaporation and the meteorological factors and that between the evapotranspiration and the meteorological factors during paddy field period were almost same as that in case of the seedling period (Ref. to table IV-4 and table IV-5). 2) The plant height, in the same level of the weight of dry matters, for PAL-TAL variety was much larger than that for TONG-IL variety, and also the number of tillers per hill for PAL-TAL variety showed a trend to be larger than that for TONG-IL variety from about 40 days after transplanting. 3) Although there was a tendency that peak of leaf-area-index for TONG-IL variety was a little retarded than that for PAL-TAL variety, it appeared about 60∼80 days after transplanting. The peaks of the evapotranspiration coefficient and the weight of dry matters at each growth stage were overlapped at about the same time and especially in the later stage of growth, the leaf-area-index, the evapotranspiration coefficient and the weight of dry matters for TONG-IL variety showed a tendency to be larger then those for PAL-TAL variety. 4) The evaporation coefficient at each growth stage for TONG-IL and PAL-TALvarieties was decreased and increased with the increase and decrease in the leaf-area-index, and the evaporation coefficient of TONG-IL variety had a little larger value than that of PAL-TAL variety. 5) Meteorological factors (especially pan evaporation) had a considerable influence to the evapotranspiration, the evaporation and the transpiration. Under the same meteorological conditions, the evapotranspiration (ET) showed a increasing logarithmic function of the weight of dry matters (x), while the evaporation (EV) a decreasing logarithmic function of the weight of dry matters; 800kg/10a x 2000kg/10a, ET=al+bl logl0x (bl>0) EV=a2+b2 log10x (a2>0 b2<0) At the base of the weight of total dry matters, the evapotranspiration and the evaporation for TONG-IL variety were larger as much as 0.3∼2.5% and 7.5∼8.3% respectively than those of PAL-TAL variety, while the transpiration for PAL-TAL variety was larger as much as 1.9∼2.4% than that for TONG-IL variety on the contrary. At the base of the weight of rough rices the evapotranspiration and the transpiration for TONG-IL variety were less as much as 3.5% and 8.l∼16.9% respectively than those for PAL-TAL variety and the evaporation for TONG-IL was much larger by 11.6∼14.8% than that for PAL-TAL variety. 6) The evapotranspiration coefficient, the evaporation coefficient and the transpiration coefficient and the transpiration coefficient were affected by the weight of dry matters much more than by the meteorological conditions. The evapotranspiratioa coefficient (ETC) and the evaporation coefficient (EVC) can be related to the weight of dry matters (x) by the following equations: 800kg/10a x 2000kg/10a, ETC=a3+b3 logl0x (b3>0) EVC=a4+b4 log10x (a4>0, b4>0) At the base of the weights of dry matters, 800kg/10a∼2000kg/10a, the evapotranspiration coefficients for TONG-IL variety were 0.968∼1.474 and those for PAL-TAL variety, 0.939∼1.470, the evaporation coefficients for TONG-IL variety were 0.504∼0.331 and those for PAL-TAL variety, 0.469∼0.308, and the transpiration coefficients for TONG-IL variety were 0.464∼1.143 and those for PAL-TAL variety, 0.470∼1.162. 7) The evapotranspiration ratio, the evaporation ratio (the ratio of the evaporation to the weight of dry matters) and the transpiration ratio were highly affected by the meteorological conditions. And under the same meteorological condition, both the evapotranspiration ratio (ETR) and the evaporation ratio (EVR) showed to be a decreasing logarithmic function of the weight of dry matters (x) as follows: 800kg/10a x 2000kg/10a, ETR=a5+b5 logl0x (a5>0, b5<0) EVR=a6+b6 log10x (a6>0 b6<0) In comparison between TONG-IL and PAL-TAL varieties, at the base of the pan evaporation of 343mm and the weight of dry matters of 800∼2000kg/10a, the evapotranspiration ratios for TONG-IL variety were 413∼247, while those for PAL-TAL variety, 404∼250, the evaporation ratios for TONG-IL variety were 197∼38 while those for PAL-TAL variety, 182∼34, and the transpiration ratios for TONG-IL variety were 216∼209 while those for PAL-TAL variety, 222∼216 (Ref. to table IV-23, table IV-25 and table IV-26) 8) The accumulative values of evapotranspiration intensity and transpiration intensity for both PAL-TAL and TONG-IL varieties were almost constant in every climatic year without the affection of the weight of dry matters. Furthermore the evapotranspiration intensity appeared to have more stable at each growth stage. The peaks of the evapotranspiration intensity and transpiration intensity, for both TONG-IL and PAL-TAL varieties, appeared about 60∼70 days after transplanting, and the peak value of the former was 128.8${\pm}$0.7, for TONG-IL variety while that for PAL-TAL variety, 122.8${\pm}$0.3, and the peak value of the latter was 152.2${\pm}$1.0 for TONG-IL variety while that for PAL-TAL variety, 152.7${\pm}$1.9 (Ref.to table IV-27 and table IV-28) 9) The K-value in Blaney & Criddle formula was changed considerably by the meteorological condition (pan evaporation) and related to be a increasing logarithmic function of the weight of dry matters (x) for both PAL-TAL and TONG-L varieties as follows; 800kg/10a x 2000kg/10a, K=a7+b7 logl0x (b7>0) The K-value for TONG-IL variety was a little larger than that for PAL-TAL variety. 10) The peak values of the evapotranspiration coefficient and k-value at each growth stage for both TONG-IL and PAL-TAL varieties showed up about 60∼70 days after transplanting. The peak values of the former at the base of the weights of total dry matters, 800∼2000kg/10a, were 1.14∼1.82 for TONG-IL variety and 1.12∼1.80, for PAL-TAL variety, and at the base of the weights of rough rices, 400∼1000 kg/10a, were 1.11∼1.79 for TONG-IL variety and 1.17∼1.85 for PAL-TAL variety. The peak values of the latter, at the base of the weights of total dry matters, 800∼2000kg/10a, were 0.83∼1.39 for TONG-IL variety and 0.86∼1.36 for PAL-TAL variety and at the base of the weights of rough rices, 400∼1000kg/10a, 0.85∼1.38 for TONG-IL variety and 0.87∼1.40 for PAL-TAL variety (Ref. to table IV-18 and table IV-32) 11) The reasonable and practicable methods that are applicable for calculating the evapotranspiration of paddy rice in our country are to be followed the following priority a) Using the evapotranspiration coefficients based on an expected yield (Ref. to table IV-13 and table IV-18 or Fig. IV-13). b) Making use of the combination method of seasonal evapotranspiration coefficient and evapotranspiration intensity (Ref. to table IV-13 and table IV-27) c) Adopting the combination method of evapotranspiration ratio and evapotranspiration intensity, under the conditions of paddy field having a higher level of expected yield (Ref. to table IV-23 and table IV-27). d) Applying the k-values calculated by Blaney-Criddle formula. only within the limits of the drought year having the pan evaporation of about 450mm during paddy field period as the design year (Ref. to table IV-32 or Fig. IV-22).

  • PDF

Studies on the fungicidal action and its physico-chemical properties of phenylmercuric 8-oxyquinolinate (Phenylmercuric 8-oxyquinolinate의 살균작용 및 이의 이화학적 성질에 관한 연구)

  • Sohn C. Y.;Kang I. M.;Lee S. H.
    • Korean journal of applied entomology
    • /
    • v.4
    • /
    • pp.11-18
    • /
    • 1965
  • In order to investigate the fungicidal activities against various plant pathogenes, diminishing effect of plant transpiration, phytotoxicities, vapor effect and the rate of reduction by ultraviolet rays of phenylmercuric 8-oxyquinolinate(P.M.Q), this experiments were undertaken under various laboratory conditions. 1. Inhibitory activity on the spore germination of this chemical was shown less effective than that of P.M.A..(Table 2, Table 3, Table 4, Table 5 and Table 6) Also, P.M.Q. was resulted a somewhat higher inhibitory activity on the hyphae growth than P.M.A. (Table 7). 2. In the diminishing effect of plant transpiration, 8-hydroxyquinoline sulfate(oxine sulfate) was more strong inhibitory at first than P.M.Q., while, at last, P.M.Q. was more strong inhibitory in comparison with oxine sulfate(Table 8, Fig. 1 and Table 9). 3. P.M.Q. was shown less injury on the germination of rice plant seeds and the emergence of their roots than P.M. A.(Table 10). Injuries was not observed on the rice seedlings and soy-bean seedlings sprayed with 40 ppm of this chemical. 4. P.M.A. had more inhibitory effects on the mycelial growth of phytopathogenes than P.M.Q. on the vapor effect (Table 11, Fig. 2). 5. Biological activity and chemical decomposition rate of P.M.A. were greatly reduced by exposure of this compound to ultraviolet rays. But, P.M.Q. was only slightly affected by similar treatment(Table 12, Fig. 3, Table 13 and Fig. 4). From the above results, this chemical will be a promising fungicide adding fungitoxicities against various phytopatho genes, diminishing effect of plant transpiration and physico-stability.

  • PDF

Characteristics of Greenup and Senescence for Evapotranspiration in Gyeongan Watershed Using Landsat Imagery (Landsat 인공위성 이미지를 이용한 경안천 유역 증발산의 생장기와 휴면기 분포 특성 분석)

  • Choi, Minha;Hwang, Kyotaek;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1B
    • /
    • pp.29-36
    • /
    • 2011
  • Evapotranspiration (ET) from the various surfaces needs to be understood because it is a crucial hydrological factor to grasp interaction between the land surface and the atmosphere. A traditional way of estimating it, which is calculating it empirically using lysimeter and pan evaporation observations, has a limitation that the measurements represent only point values. However, these measurements cannot describe ET because it is easily affected by outer circumstances. Thus, remote sensing technology was applied to estimate spatial distribution of ET. In this study, we estimated major components of energy balance method (i.e. net radiation flux, soil heat flux, sensible heat flux, and latent heat flux) and ET as a map using Mapping Evapo-Transpiration with Internalized Calibration (METRIC) satellite-based image processing model. This model was run using Landsat imagery of Gyeongan watershed in Korea on Feb 1, 2003 and Sep 13, 2006. Basic statistical analyses were also conducted. The estimated mean daily ETs had respectively 22% and 11% of errors with pan evaporation data acquired from the Suwon Weather Station. This result represented similar distribution compared with previous studies and confirmed that the METRIC algorithm had high reliability in the watershed. In addition, ET distribution of each land use type was separately examined. As a result, it was identified that vegetation density had dominant impacts on distribution of ET. Seasonally, ET in a growing season represented significantly higher than in a dormant season due to more active transpiration. The ET maps will be useful to analyze how ET behaves along with the circumstantial conditions; land cover classification, vegetation density, elevation, topography.

Engineering Approach to Crop Production in Space (우주에서 작물 생산을 위한 공학적 접근)

  • Kim Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.14 no.3
    • /
    • pp.218-231
    • /
    • 2005
  • This paper reviews the engineering approach needed to support humans during their long-term missions in space. This approach includes closed plant production systems under microgravity or low pressure, mass recycling, air revitalization, water purification, waste management, elimination of trace contaminants, lighting, and nutrient delivery systems in controlled ecological life support system (CELSS). Requirements of crops f3r space use are high production, edibility, digestibility, many culinary uses, capability of automation, short stems, and high transpiration. Low pressure on Mars is considered to be a major obstacle for the design of greenhouses fer crop production. However interest in Mars inflatable greenhouse applicable to planetary surface has increased. Structure, internal pressure, material, method of lighting, and shielding are principal design parameters for the inflatable greenhouse. The inflatable greenhouse operating at low pressure can reduce the structural mass and atmosphere leakage rate. Plants growing at reduced pressure show an increasing transpiration rates and a high water loss. Vapor pressure increases as moisture is added to the air through transpiration or evaporation from leaks in the hydroponic system. Fluctuations in vapor pressure will significantly influence total pressure in a closed system. Thus hydroponic systems should be as tight as possible to reduce the quantity of water that evaporates from leaks. And the environmental control system to maintain high relative humidity at low pressure should be developed. The essence of technologies associated with CELSS can support human lift even at extremely harsh conditions such as in deserts, polar regions, and under the ocean on Earth as well as in space.

Photosynthetic Patterns of 3 Crassulacean Plants under Drought Conditions

  • Kim, Tae-Jin;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.30 no.2
    • /
    • pp.187-193
    • /
    • 2007
  • Higher plants can be categorized as C3, C4 or CAM according to their photosynthetic pathways, and some succulent plants are known to shift their patterns of photosynthesis from C3 to CAM in response to environmental stresses such as salt treatment or water deficiency. To investigate fundamental photosynthetic patterns and the induction of pattern shifts (C3, CAM, C3-CAM etc.) as a result of environmental stresses, we measured the water content, diurnal changes in pH, net $CO_2$ exchange, transpiration rate, total ionic contents, and osmolality of Kalancoe daigremontiana, Sedum kamschaticum and Sedum sarmentosum which belong to Crassulaceae known as representative CAM plant, after 10 days of drought treatment. S. kamschaticum and S. sarmentosum did not show a significant difference in diurnal pH variation in the treatment and control conditions. However, the pH of drought-treated Kalancoe was low at night and high in the daytime, with a pH value between 4 and 5. Typical CAM plants display a net $CO_2$ exchange that increases at night and decreases in the daytime. Kalancoe displayed the predicted pattern. However, S. kamschaticum and S. sarmentosum showed a photosynthetic pattern more typical of C3 plants, and did not show changes in photosynthetic pattern under drought stress. Kalancoe also showed a transpiration rate typical for CAM pho-tosynthesis, whereas the transpiration rates of S. kamschaticum and S. sarmentosum were in the typical range for C3 photosynthesis. Kalancoe had high total ionic contents during the night, which decreased somewhat during the daytime, whereas S. kamschaticum and S. sarmentosum displayed the opposite pattern. This result is similar to the diurnal patterns of changes in pH in the three plant species, which suggests a relationship between pH and ionic contents. S. sarmentosum showed lower osmolality under drought stress than in the control condition, whereas the osmolality of Kalancoe and S. kamschaticum did not differ between conditions. S. sarmentosum may have maintained internal water content by lowering its osmolality and raising its total ionic contents. In conclusion, Kalancoe displayed the characteristic responses of a typical CAM plant, whereas S. kamschaticum and S. sarmentosum displayed aspects of the C3 photosynthetic pattern under drought conditions. These results suggest that S. kamschaticum and S. sarmentosum (Crassulacea) in Korea overcome drought stress by increasing solute and ionic contents internally rather than changing their photosynthetic pattern from C3 to CAM under drought stress.

The Interrelationships between Yield, Transpiration of the Tobacco Plant, and Seasonal Meteorological Factors during the Growing Season 2. Interrelationship between Tobacco Yield and Meteorological Factors including Precipitation, Duration of Sunshine, and Evaporation during the Growing Season (연초재배기간중(煙草栽培期間中) 증산량(蒸散量) 및 수량(收量) 2. 연초생육기간(煙草生育期間)동안의 강수량(降水量), 일조시간(日照時間) 및 증발량등(蒸發量等)과 연초수량(煙草收量)과의 상호관계(相互關係))

  • Hong, Soon-Dal;Kim, Jai-Joung;Cho, Seong-Jin;Lee, Yun-Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.22 no.4
    • /
    • pp.285-289
    • /
    • 1989
  • Interrelationships between yields of Burley 21 variety and meteorological factors such as precipitation, duration of sunshine, and evaporation in Suweon, Chungju, Daegu, and Jeonju were investigated during the growing seasons from 1976 to 1985. Cultivation period from the 41st to the 60th day after transplanting which showed the highest transpiration by the tobacco plant was corresponding to relatively dry season in Korea from the middle of May to early of June. The meteorological factors during the middle stage of the tobacco growth, especially the 41st to the 80th day after transplanting, seemed to have higher correlation with tobacco yield, than any other periods. This result implied that the middle stage of the growth when tobacco plant consume more soil moisture by transpiration proved to be a important growth stage having a great influence upon tobacco productivity.

  • PDF

Effect of water potential of culture solution on water uptake, transpiration and photosynthesis of Panax ginseng (배양액(培養液)의 수분장력(水分張力)이 인삼(人蔘)의 수분흡수(水分吸收) 증산(蒸散) 및 광합성(光合成)에 미치는 영향(影響))

  • Mok, Sung-Kyun;Park, Hoon;Lee, Chong-Hwa;Son, Suk-Yeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.13 no.4
    • /
    • pp.115-118
    • /
    • 1981
  • Effect of water potential of culture solution on photosynthesis, transpiration and water uptake was investigated using polyethylene glycol 6000. 1. Even at -0.5 bar of culture solution phothosynthesis was decreased by 20% within 1 hour. Plant in control showed 3.26% loss of initial water for 13 hours suggesting very sensitive in water uptake. 2. Relation between water potential of culture solution (${\psi}$) and water uptake amount (W) 2-year root was ${\psi}=-2.890/e^{2.796W}$ indicating that permanent wilting point will be greater than -2.89 bar. 3. Transpiration considerably decreased with the decrease of water potential and thus by 23.9% at -0.5 bar after 4 hours. 4. From the above results ginseng plant appears to have high root water potential at permanent wilting point and thus very week to water stress due to drought or high salt content in soils.

  • PDF