• Title/Summary/Keyword: transparent conductive oxide (TCO)

Search Result 132, Processing Time 0.029 seconds

Fabrication of transparent conductive thin films with Ag mesh shape using the polystyrene beads monolayer

  • Jung, Taeyoung;Choi, Eun Chang;Hong, Byungyou
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.313-313
    • /
    • 2016
  • Transparent conductive oxide (TCO) films have many disadvantages, such as rarity, possible exhaustion, process temperature limitations, and brittleness on a flexible substrate. In particular, as display technology moves toward flexible displays, TCO will become completely unsuitable due to its brittleness. To address theses issue, many researchers have been studying TCO substitutes. In recent efforts, metal nanowires, conducting polymers, carbon nanotube networks, graphene films, hybrid thin films, and metal meshes/grids have been evaluated as candidates to replace TCO electrodes. In this study, we fabricated the TCO film with Ag meshes shape using polystyrene (PS) beads monolayer on the substrate. The PS beads were used as a template to create the mesh pattern. We fabricated the monolayer on the flexible substrate (PES) with the well-aligned PS beads. Electrodes with Ag mesh shape were formed using this patterned monolayer. We could fabricated the Ag mesh electrode with the sheet resistance with $8ohm{\Omega}/{\Box}$.

  • PDF

Feasibility of Indium Tin Oxide (ITO) Swarf Particles to Transparent Conductive Oxide (TCO)

  • Hong, Sung-Jei;Yang, DuckJoo;Cha, Seung Jae;Lee, Jae-Yong;Han, Jeong-In
    • Current Photovoltaic Research
    • /
    • v.3 no.2
    • /
    • pp.50-53
    • /
    • 2015
  • Indium (In) is widely used for transparent electrodes of photovoltaics as a form of indium tin oxide (ITO) due to its superior characteristics of environmental stability, relatively low electrical resistivity and high transparency to visible light. However, In has been worn off in proportion to growth the In related market, and it leads to raise of price. Although In is obtained from ITO target scarps, much harmful elements are used for the recycling process. To decrease of harmful elements, ITO swarf particles obtained from target scraps was characterized whether it is feasible to transparent conductive oxide (TCO). The ITO swarf was crushed with milling process, and it was mixed with new ITO nanoparticles. The mixed particles were well dispersed into ink solvent to make-up an ink, and it was well coated onto glass substrate. After heat-treatment at $400^{\circ}C$ under $N_2$ rich environments, optical transmittance at 550 nm and sheet resistance of the ITO ink coated layer was 71.6% and $524.67{\Omega}/{\square}$, respectively. Therefore, it was concluded that the ITO swarf was feasible to TCO of touch screen panel.

A Study on the Improvement of the Dye-sensitized Solar Cell by the Fiber Laser Transparent Conductive Electrode Scribing Technology (파이버 레이저 투명 전극 식각을 통한 염료감응형 태양전지 효율 상승 연구)

  • Son, Min-Kyu;Seo, Hyun-Woong;Shin, In-Young;Kim, Jin-Kyoung;Choi, Jin-Ho;Choi, Seok-Won;Kim, Hee-Je
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.12
    • /
    • pp.2218-2224
    • /
    • 2010
  • Dye-sensitized solar cell (DSC) is a promising alternative solar cell to the conventional silicon solar cell due to several advantages. Development of large scale module is necessary to commercialize the DSC in the near future. A scribing technology of the transparent conductive oxide (TCO) is one of the important technologies on the fabrication of DSC module. A quality of the scribed line on the TCO has a decisive effect on the efficiency of DSC module. Among several scribing technologies, the fiber laser is a suitable for scribing the TCO more precisely and accurately because of their own characteristics. In this study, we try to improve the quality of the TCO scribed line by using the fiber laser. Consequently, the operating parameter of fiber laser is optimized to get the TCO scribed line with good quality. And the fiber laser scribing technology of the TCO is applied to the fabrication of the DSC with optimal operating parameter, operating current 3900mA. As a result, the current density and fill factor are improved and the total efficiency is increased because the internal resistances of DSC such as TCO sheet resistance and the resistance concerned to the electron movement in the $TiO_2$ are reduced. This is analyzed by the electrochemistry impedance spectroscopy (EIS) and the equivalent circuit model of the DSC.

Fabrication of Transparent Conductive Oxide-less Dye-Sensitized Solar Cells Consisting of Titanium Double Layer Electrodes (이중층 티타늄 전극으로 구성된 TCO-less 염료감응형 태양전지 제작에 관한 연구)

  • Shim, Choung-Hwan;Kim, Yun-Gi;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.114-118
    • /
    • 2011
  • Dye-Sensitized Solar Cells(DSSCs) consist of a titanium dioxide($TiO_2$) nano film of the photo electrode, dye molecules on the surface of the $TiO_2$ film, an electrolyte layer and a counter electrode. But two transparent conductive oxide(TCO) substrates are estimated to be about 60[%] of the total cost of the DSSCs. Currently novel TCO-less structures have been investigated in order to reduce the cost. In this study, we suggested a TCO-less DSSCs which has titanium double layer electrodes. Titanium double layer electrodes are formed by electron-beam evaporation method. Analytical instruments such as electrochemical impedance spectroscopy, scanning electron microscope were used to evaluate the TCO-less DSSCs. As a result, the proposed structure decreases energy conversion efficiency and short-circuit current density compared with the conventional DSSCs structure with FTO glass, while internal series impedance of TCO-less DSSCs using titanium double layer electrodes decreases by 27[%]. Consequently, the fill factor is improved by 28[%] more than that of the conventional structure.

The Deposition and Properties of Surface Textured ZnO:Al Films (표면 텍스쳐된 ZnO:Al 투명전도막 증착 및 특성)

  • 유진수;이정철;김석기;윤경훈;박이준;이준신
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.9
    • /
    • pp.378-382
    • /
    • 2003
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCI (0.5%) to examine the electrical and surface morphology properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure md the substrate temperature. In low pressures (0.9mTorr) and high substrate temperatures ($\leq$$300^{\circ}C$), the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

The fabrication and properties of surface textured ZnO:Al films (Surface Textured ZnO:Al 투명전도막 제작 및 특성)

  • 유진수;이정철;강기환;김석기;윤경훈;송진수;박이준
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.07a
    • /
    • pp.391-394
    • /
    • 2002
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCl (0.5%) to examine the electrical and surface morphology Properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure and the substrate temperature. In low pressures (0.9 mTorr) and high substrate temperatures ($\leq$30$0^{\circ}C$), the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

  • PDF

Analysis of the Texture Structure of Transparent Conductive AZO thin films for LED Applications. (LED적용을 위한 AZO 투명전도 박막의 표면 texture 구조분석)

  • Kim, Kyeong-Min;Kim, Deok-Kyu;Oh, Sang-Hyun;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.103-104
    • /
    • 2006
  • Transparent conductive oxide (TCO) are necessary as front electrode for increased efficiency of LED. In our paper, transparent conducting alminum-doped Zinc oxide films (AZO) were prepared by rf magnetron sputtering on glass (corning 1737) substrate, were then annealed at temperature $400^{\circ}C$ for 2hr. The smooth AZO films were etched in diluted HCL (0.5%) to examine the surface morphology properties as a variation of the time. The surface morphology of AZO films increased as a time. We observed texture structure of AZO thin film etched for 1min.

  • PDF

Ga-doped ZnO (GZO) 박막의 anti-reflective 특성

  • Park, Ji-Hyeon;Lee, Min-Jeong;Lee, Tae-Il;Myeong, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.111.2-111.2
    • /
    • 2012
  • 정보 기술 시대에 맞춰 광전소자의 연구가 활발해지면서 투명전극으로 사용될 수 있는 Transparent Conductive Oxide (TCO) 재료에 대한 관심이 높아지고 있다. 하지만 TCO의 대표적인 물질인 Indium Tin Oxide (ITO)의 경우 In의 가격 상승으로 인해 최근에는 낮은 전도도와 높은 투과도를 가질 수 있는 대체 물질에 대한 연구가 활발히 진행되고 있다. 그 중에서 3.2 eV 의 높은 밴드갭을 갖는 ZnO 는 가시광선 영역에서 높은 투과율을 나타낼 뿐만 아니라 Al, Ga을 도핑함으로써 낮은 전도도를 가질 수 있다. 이러한 TCO 재료는 surface texturing을 통하여 optical region 에서 반사를 억제 시킴으로서 빛을 모으는 역할을 하여 태양전지의 효율을 향상 시킬 수 있기 때문에 PV (Photovoltaics) Cell의 anti-reflective coating에 적용 할 수 있다. 본 연구에서는 pulsed DC magnetron sputtering을 이용하여 Ga-doped ZnO (GZO) 박막을 증착하였고, HCl 0.5 wt %로 wet etching을 통하여 surface texturing을 진행하였다. 결정성은 X-ray diffractometer (XRD)로 분석하였으며, 표면 형상은 Scanning Electron Microscope (SEM)을 통해 확인하였다. Van der Pauw 방법을 통해 resistivity, carrier concentration, hall mobility 등의 전기적 특성을 분석하였고 UV-Vis spectrophotometer 를 통해 투과도 및 반사도를 측정하였다.

  • PDF

Synthesis of TCO-free Dye-sensitized Solar Cells with Nanoporous Ti Electrodes Using RF Magnetron Sputtering Technology

  • Kim, Doo-Hwan;Heo, Jong-Hyun;Kwak, Dong-Joo;Sung, Youl-Moon
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.146-150
    • /
    • 2010
  • A new type of dye-sensitized solar cell (DSC) based on a porous type Ti electrode without using a transparent conductive oxide (TCO) layer is fabricated for low-cost high-efficient solar cell application. The TCO-free DSC is composed of a glass substrate/dye-sensitized $TiO_2$ nanoparticle/porous Ti layer/electrolyte/Pt sputtered counter electrode. The porous Ti electrode (~350 nm thickness) with high conductivity can collect electrons from the $TiO_2$ layer and allows the ionic diffusion of $I^-/I_3{^-}$ through the hole. The vacuum annealing treatment is important with respect to the interfacial necking between the metal Ti and porous $TiO_2$ layer. The efficiency of the prepared TCO-free DSC sample is about 3.5% (ff: 0.48, $V_{oc}$: 0.64V, $J_{sc}$: 11.14 mA/$cm^2$).

Carbon Nanotube (CNT) based Transparent Conductive Films for Display Applications (탄소나노튜브 기반 투명전도성 필름 및 이의 응용)

  • Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.77-77
    • /
    • 2007
  • The development of next generation displays such as flexible display is a major challenge. Most materials and processes in current flat panel display industry cannot be transferred to flexible substrates. Typically, indium tin oxide (ITO) thin films are brittle and need to be deposited at high temperature to achieve an optimal opto-electrical property, therefore ITO films cannot be used as a flexible electrode. Up to date, many alternative materials to ITO have been proposed such as conductive polymers, nanometals, solution deposited transparent conductive oxide(TCO) and carbon nanotubes(CNTs). CNT based transparent conductive films are fabricated on glass and polymer substrates. CNT thin films exhibit a sheet resistance ($R_s$) of nearby $10^3\;{\Omega}/sq$ with a transmittance of around 80% on the visible light range, which is attributed by excellent dispersion and interaction among CNTs, solvents and polymeric binders. This talk will present the current studies, opto-electrical properties, design criteria and its applications for CNT-based transparent conductive films.

  • PDF