• 제목/요약/키워드: transparent conducting film

검색결과 306건 처리시간 0.026초

Transparent ITO/Ag/i-ZnO Multilayer Thin Film enhances Lowing Sheet Resistance

  • Kim, Sungyoung;Kim, Sangbo;Heo, Jaeseok;Cho, Eou-Sik;Kwon, Sang Jik
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.187-187
    • /
    • 2015
  • The past thirty years have seen increasingly rapid advances in the field of Indium Tin Oxide (ITO) transparent thin film.[1] However, a major problem with this ITO thin film application is high cost compared with other transparent thin film materials.[2] So far, in order to overcome this disadvantage, we show a transparent ITO/Ag/i-ZnO multilayer thin film electrode can be the solution. In comparison with using amount of ITO as a transparent conducting material, intrinsic-Zinc-Oxide (i-ZnO) based on ITO/Ag/i-ZnO multilayer thin film showed cost-effective and it has not only highly transparent but also conductive properties. The aim of this research has therefore been to try and establish how ITO/Ag/i-ZnO multilayer thin film would be more effective than ITO thin film. Herein, we report ITO/Ag/i-ZnO multilayer thin film properties by using optical spectroscopic method and measuring sheet resistance. At a certain total thickness of thin film, sheet resistance of ITO/Ag/i-ZnO multilayer was drastically decreased than ITO layer approximately $40{\Omega}/{\square}$ at same visible light transmittance.(minimal point $5.2{\Omega}/{\square}$). Tendency, which shows lowly sheet resistive in a certain transmittance, has been observed, hence, it should be suitable for transparent electrode device.

  • PDF

Effects of the Ag Layer Embedded in NIZO Layers as Transparent Conducting Electrodes for Liquid Crystal Displays

  • Oh, Byeong-Yun;Heo, Gi-Seok
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권1호
    • /
    • pp.33-36
    • /
    • 2016
  • In the present work, a Ni-doped indium zinc oxide (NIZO) film and its multilayers with Ag layers were investigated as transparent conducting electrodes for liquid crystal display (LCD) applications, as a substitute for indium tin oxide (ITO) electrodes. By interposing the Ag layer between the NIZO layers, the loss of the optical transmittance occurred; however, the Ag layer brought enhancement of electrical sheet resistance to the NIZO/Ag/NIZO multilayer electrode. The twisted nematic cell based on the NIZO/Ag/NIZO multilayer electrode exhibited superior electro-optical characteristics than those based on single NIZO electrode and was competitive compared to those based on the conventional ITO electrode. An LCD-based NIZO/Ag/NIZO multilayer electrode may allow new approaches to conventional ITO electrodes in display technology.

전도성 고분자 박막을 이용한 ITO 투명 전극 필름의 열성형 안정성 향상 연구 (The Enhanced Thermoforming Stability of ITO Transparent Electrode Film by Using the Conducting Polymer Thin-Film)

  • 손서영;박성연;이상섭;윤창훈
    • 멤브레인
    • /
    • 제33권5호
    • /
    • pp.248-256
    • /
    • 2023
  • ITO 투명 전극 필름은 디스플레이, 전기 자동차 등 산업 전 범위에서 널리 사용되는 전자 재료이다. 본 연구에서는 이러한 indium tin oxide (ITO) 필름의 열성형 안정성을 향상시키기 위하여 Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) 전도성 고분자 코팅 용액 조성을 결정하였다. 1000 S/cm의 고 전도성을 보이는 PEDOT:PSS 용액에 끓는점이 각기 다른 4가지 종류의 용매를 희석하였고, 코팅 전 후 면저항 변화를 분석하였다. 또한 380~800 nm 영역의 광 투과율 분석 및 Raman 스펙트럼 분석을 통하여 PEDOT:PSS 박막이 코팅된 ITO 투명 전극의 전기적 특성 결정 메커니즘을 규명하였다. 230℃ 열성형 공정 결과 ITO 필름은 113% 연신 상태에서 이미 전기 전도성을 읽었지만, ethylene glycol을 희석 용매로 사용하여 얻어진 전도성 고분자 박막이 적용된 ITO 필름은 126% 고 연신 상태에서도 초기 60 Ω/sq 면저항을 246 Ω/sq로 유지하는 우수한 전기 전도성을 보였다.

PDP 투명전극의 응용을 위한 ITO 박막의 제작평가 (Fabrication and Characterizations of ITO Film as a Transparent Conducting Electrode for PDP Application)

  • 박강일;임동건;곽동주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.788-791
    • /
    • 2002
  • Tin doped indium oxide(ITO) films are highly conductive and transparent in the visible region whose property leads to the applications in solar cell, liquid crystal display, thermal heater, and other sensors. This paper investigated ITO films as a transparent conducting films for application of PDP. ITO films were grown on glass substrate by RF magnetron sputtering method. To achieve high transmittance and low resistivity, we examined the various film deposition such as substrate temperature, gas pressure, annealing temperature, and deposition time. We recommend the substrate temperature of $500^{\circ}C$ and post annealing of $200^{\circ}C$ in $O_2$ atmosphere for good conductivity and transmittance. From XRD examination, ITO films showed a preferred(222) orientation. As substrate temperature increased from RT to $500^{\circ}C$, the intensity of the (222) peak increased. The highest peak intensity was observed at a substrate temperature of $500^{\circ}C$. with the optimum growth conditions, ITO films showed resistivity of $1.04{\times}10^{-4}{\Omega}-cm$ and transmittance of 81.2% for a film 300nm thick in the wavelength range of the visible spectrum.

  • PDF

산소 분압 조절에 따른 ITO/PVDF 박막 물성 조절 연구 (Physical Properties of ITO/PVDF as a function of Oxygen Partial Pressure)

  • 이상엽;김지환;박동희;변동진;최원국
    • 한국전기전자재료학회논문지
    • /
    • 제21권10호
    • /
    • pp.923-929
    • /
    • 2008
  • On the piezoelectric polymer, PVDF (poly vinylidene fluoride), the transparent conducting oxide (TCO) electrode material thin film was deposited by roll to roll sputtering process mentioned as a mass product-friendly process for display application. The deposition method for ITO Indium Tin Oxides) as our TCO was DC magnetron sputtering optimized for polymer substrate with the low process temperature. As a result, a high transparent and good conductive ITO/PVDF film was prepared. During the process, especially, the gas mixture ratio of Ar and Oxygen was concluded as an important factor for determining the film's physical properties. There were the optimum ranges for process conditions of mixture gas ratio for ITO/PVDF From these results, the doping mechanism between the oxygen atom and the metal element, Indium or Tin was highly influenced by oxygen partial pressure condition during the deposition process at ambient temperature, which gives the conductivity to oxide electrode, as generally accepted. With our studies, the process windows of TCO for display and other application can be expected.

기판온도 변화에 따른 ZnO:Al 투명 전도막의 특성 변화 (A study on the properties of transparent conductive ZnO:Al films on variaton substrate temperature)

  • 양진석;성하윤;금민종;손인환;신성권;김경환
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2001년도 추계학술대회 논문집 Vol.14 No.1
    • /
    • pp.525-528
    • /
    • 2001
  • ZnO:Al thin film can be used as a transparent conducting oxide(TCO) which has low electric resistivity and high optical transmittance for the front electrode of amorphous silicon solar cells and display devices. This study of electrical, crystallographic and optical properties of Al doped ZnO thin films prepared by Facing Targets Sputtering(FTS), where strong internal magnets were contained in target holders to confine the plasma between the targets, is described. Optimal transmittance and resistivity was obtained by controlling flow rate of $O_2$ gas and substrate temperature. When the $O_2$ gas rate of 0.3 and substrate temperature $200^{\circ}C$, ZnO:Al thin film had strongly oriented c-axis and lower resistivity( < $10^{-4}{\Omega}-cm$ ).

  • PDF

Characterization of Highly Conducting ZnMgBeGaO/Ag/ZnMgBeGaO Transparent Conductive Multilayer Films with UV Energy Bandgap

  • Le, Ngoc Minh;Hoang, Ba Cuong;Lee, Byung-Teak
    • 한국재료학회지
    • /
    • 제27권12호
    • /
    • pp.695-698
    • /
    • 2017
  • ZnMgBeGaO/Ag/ZnMgBeGaO multilayer structures were sputter grown and characterized in detail. Results indicated that the electrical properties of the ZnMgBeGaO films were significantly improved by inserting an Ag layer with proper thickness (~ 10 nm). Structures with thicker Ag films showed much lower optical transmission, although the electrical conductivity was further improved. It was also observed that the electrical properties of the multilayer structure were sizably improved by annealing in vacuum (~35 % at $300^{\circ}C$). The optimum ZnMgBeGaO(20nm)/Ag(10nm)/ZnMgBeGaO(20nm) structure exhibited an electrical resistivity of ${\sim}2.6{\times}10^{-5}{\Omega}cm$ (after annealing), energy bandgap of ~3.75 eV, and optical transmittance of 65 % ~ 95 % over the visible wavelength range, representing a significant improvement in characteristics versus previously reported transparent conductive materials.

표면 텍스쳐된 ZnO:Al 투명전도막 증착 및 특성 (The Deposition and Properties of Surface Textured ZnO:Al Films)

  • 유진수;이정철;김석기;윤경훈;박이준;이준신
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권9호
    • /
    • pp.378-382
    • /
    • 2003
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCI (0.5%) to examine the electrical and surface morphology properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure md the substrate temperature. In low pressures (0.9mTorr) and high substrate temperatures ($\leq$$300^{\circ}C$), the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

Surface Textured ZnO:Al 투명전도막 제작 및 특성 (The fabrication and properties of surface textured ZnO:Al films)

  • 유진수;이정철;강기환;김석기;윤경훈;송진수;박이준
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집
    • /
    • pp.391-394
    • /
    • 2002
  • Transparent conductive oxides (TCO) are necessary as front electrode for most thin film solar cell. In our paper, transparent conducting aluminum-doped Zinc oxide films (ZnO:Al) were prepared by rf magnetron sputtering on glass (Corning 1737) substrate as a variation of the deposition condition. After deposition, the smooth ZnO:Al films were etched in diluted HCl (0.5%) to examine the electrical and surface morphology Properties as a variation of the time. The most important deposition condition of surface-textured ZnO films by chemical etching is the processing pressure and the substrate temperature. In low pressures (0.9 mTorr) and high substrate temperatures ($\leq$30$0^{\circ}C$), the surface morphology of films exhibits a more dense and compact film structure with effective light-trapping to apply the silicon thin film solar cells.

  • PDF

Bias 전압에 따른 ZnO:Al 투명전도막의 전기적 특성 (Substrate Bias Voltage Dependence of Electrical Properties for ZnO:Al Film by DC Magnetron Sputtering)

  • 박강일;김병섭;임동건;이수호;곽동주
    • 한국전기전자재료학회논문지
    • /
    • 제17권7호
    • /
    • pp.738-746
    • /
    • 2004
  • Recently zinc oxide(ZnO) has emerged as one of the most promising transparent conducting films with a strong demand of low cost and high performance optoelectronic devices, ZnO film has many advantages such as high chemical and mechanical stabilities, and abundance in nature. In this paper, in order to obtain the excellent transparent conducting film with low resistivity and high optical transmittance for Plasma Display Pannel(PDP), aluminium doped zinc oxide films were deposited on Corning glass substrate by dc magnetron sputtering method. The effects of the discharge power and doping amounts of $Al_2$$O_3$ on the electrical and optical properties were investigated experimentally. Particularly in order to lower the electrical resistivity, positive and negative bias voltages were applied on the substrate, and the effect of bias voltage on the electrical properties of ZnO:Al thin film were also studied and discussed. Films with lowest resistivity of $4.3 \times 10 ^{-4} \Omega-cm$ and good transmittance of 91.46 % have been achieved for the films deposited at 1 mtorr, $400^{\circ}C$, 40 W, Al content of 2 wt% with a substrate bias of +30 V for about 800 nm in film thickness.