Browse > Article
http://dx.doi.org/10.3740/MRSK.2017.27.12.695

Characterization of Highly Conducting ZnMgBeGaO/Ag/ZnMgBeGaO Transparent Conductive Multilayer Films with UV Energy Bandgap  

Le, Ngoc Minh (Photonic and Electronic Thin Film Laboratory, Department of Materials Science and Engineering, Chonnam National University)
Hoang, Ba Cuong (Photonic and Electronic Thin Film Laboratory, Department of Materials Science and Engineering, Chonnam National University)
Lee, Byung-Teak (Photonic and Electronic Thin Film Laboratory, Department of Materials Science and Engineering, Chonnam National University)
Publication Information
Korean Journal of Materials Research / v.27, no.12, 2017 , pp. 695-698 More about this Journal
Abstract
ZnMgBeGaO/Ag/ZnMgBeGaO multilayer structures were sputter grown and characterized in detail. Results indicated that the electrical properties of the ZnMgBeGaO films were significantly improved by inserting an Ag layer with proper thickness (~ 10 nm). Structures with thicker Ag films showed much lower optical transmission, although the electrical conductivity was further improved. It was also observed that the electrical properties of the multilayer structure were sizably improved by annealing in vacuum (~35 % at $300^{\circ}C$). The optimum ZnMgBeGaO(20nm)/Ag(10nm)/ZnMgBeGaO(20nm) structure exhibited an electrical resistivity of ${\sim}2.6{\times}10^{-5}{\Omega}cm$ (after annealing), energy bandgap of ~3.75 eV, and optical transmittance of 65 % ~ 95 % over the visible wavelength range, representing a significant improvement in characteristics versus previously reported transparent conductive materials.
Keywords
ZnO; transparent conducting oxides; UV wavelength; multilayer;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. Yang, C. Yao, Y. Yu, Z. Li and X. Wang, Sci. Rep., 7, 1 (2017).   DOI
2 K. Ellmer, Nat. Photonics, 6, 809 (2012).   DOI
3 D. J. Cohen, K. C. Ruthe and S.A. Barnett, J. Appl. Phys., 96, 459 (2004).   DOI
4 K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata and S. Niki, Appl. Phys. Lett., 85, 1374 (2004).   DOI
5 J. H. Park, H. B. Cuong, S. H. Jeong and B. T. Lee, J. Alloy Compd., 615, 126 (2014).   DOI
6 C. Yang, X. M. Li, Y. F. Gu, W. D. Yu, X. D. Gao and Y. W. Zhang, Appl. Phys. Lett., 93, 112114 (2008).   DOI
7 H. B. Cuong, C. S. Lee and B. T. Lee, Thin Solid Films, 573, 95 (2014).   DOI
8 V. Sharma, P. Kumar, A. Kumar, K. Asokan and K. Sachdev, Sol. Energy Mater. Sol. Cells, 169, 122 (2017).   DOI
9 F. Larsson, J. Keller, M. Edoff and T. Torndahl, Thin Solid Films, 633, 235 (2017).   DOI
10 A. Bingel, O. Stenzel, P. Naujok, R. Muller, S. Shestaeva, M. Steglich, U. Schulz, N. Kaiser and A. Tunnermann, Opt. Mater. Express, 6, 3217 (2016).   DOI
11 Y. S. Park, H. K. Kim and S. W. Kim, J. Electrochem. Soc., 157, 301 (2010).
12 N. M. Le and B. T. Lee, ACS Appl. Mater. Interfaces, 9, 32316 (2017).   DOI
13 J. A. Jeong and H. K. Kim, Sol. Energy Mater. Sol. Cells, 93, 1801 (2009).   DOI
14 J. H. Kim, H. K. Lee, J. Y. Na, S. K. Kim, Y. Z. Yoo and T. Y. Seong, Ceram. Int., 41, 8059 (2015).   DOI
15 H. Han, N. D. Theodore and T. L. Alford, J. Appl. Phys., 103, 013708 (2008).   DOI
16 J. Gong, R. Dai, Z. Wang and Z. Zang, Sci. Rep., 5, 9279 (2015).   DOI
17 C. Guillen and J. Herrero, Thin Solid Films, 520, 1 (2011).   DOI
18 J. A. Sans, J. F. Sanchez-Royo, A. Segura, G. Tobias and E. Canadell, Phys. Rev. B: Condens. Matter., 79, 195105 (2009).   DOI
19 Y. S. Jung, Y. W. Choi, H. C. Lee and D. W. Lee, Thin Solid Films, 440, 278 (2003).   DOI
20 D. R. Sahu, C. Y. Chen, S. Y. Lin and J. L. Huang, Thin Solid Films, 515, 932 (2006).   DOI
21 N. M. Le and B. T. Lee, Ceram. Int., 42, 5258 (2016).   DOI