• 제목/요약/키워드: transmission losses

검색결과 384건 처리시간 0.026초

Allocation of Transmission Loss for Determination of Locational Spot pricing

  • You, Chang-Seok;Min, Kyung-Il;Lee, Jong-Gi;Moon, Young-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • 제2권2호
    • /
    • pp.194-200
    • /
    • 2007
  • The deregulation problem has recently attracted attentions in a competitive electric power market, where the cost must be earmarked fairly and precisely for the customers and the Independent Power Producers (IPPs) as well. Transmission loss is an one of several important factors that determines power transmission cost. Because the cost caused by transmission losses is about $3{\sim}5%$, it is important to allocate transmission losses into each bus in a power system. This paper presents the new algorithm to allocate transmission losses based on an integration method using the loss sensitivity. It provides the buswise incremental transmission losses through the calculation of load ratios considering the transaction strategy of an overall system. The performance of the proposed algorithm is evaluated by the case studies carried out on the WSCC 9-bus and IEEE 14-bus systems.

송전 손실 재분배를 고려한 최소 손실 조류 계산 알고리즘 (A Loss-Minimized Power Flow Algorithm Considering Transmission Losses Re-distribution)

  • 채명석;이명환;신중린
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 추계학술대회 논문집 학회본부A
    • /
    • pp.223-225
    • /
    • 1998
  • This paper presents a new approach for power flow calculation, which minimizes the transmission losses in power systems with the control of voltage magnitudes on P-V nodes. In this approach, the transmission losses are re-distributed to each P-V node, at each iteration, to reduce the effect of slack. The steepest descent method is adopted, in this study, to minimize the transmission losses augmented with penalty functions to account for voltage constraints. IEEE 14 and 30 buses test systems were used for the performance demonstration of the proposed method in this paper. The simulation results showed that the proposed method can reduce transmission losses and improve voltage profiles of power systems.

  • PDF

연계 계통에서의 환경적 배출량과 손실을 고려한 최적 경제급전 (Multi-Area Economic Dispatch Considering Environmental Emission and Transmission Losses)

  • 최승조;이상봉;김규호;유석구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 A
    • /
    • pp.341-343
    • /
    • 2000
  • Traditionally electric power system are operated in such a way that the total fuel cost is minimized regardless of accounting for tie-lines transmission constraint and emissions produced. But tie-lines transmission and emissions constraint are very important issues in the operation and planning of electric power system. This paper presents the Two-Phase Neural Network(TPNN) to solve the Economic Load Dispatch (ELD) problem with tie-lines transmission and emissions constraint considering transmission losses. The transmission losses are obtained from the B-coefficient which approximate the system losses as s quadratic function of the real power generation. By applying the proposed algorithm to the test system, the usefulness of this algorithm is verified.

  • PDF

제약조건을 고려한 경제급전 제어를 위한 다단계 최적조류계산 알고리즘 (A Multi-level Optimal Power Flow Algorithm for Constrained Power Economic Dispatch Control)

  • 송경빈
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제50권9호
    • /
    • pp.424-430
    • /
    • 2001
  • A multi-level optimal power flow(OPF) algorithm has been evolved from a simple two stage optimal Power flow algorithm for constrained power economic dispatch control. In the proposed algorithm, we consider various constraints such as ower balance, generation capacity, transmission line capacity, transmission losses, security equality, and security inequality constraints. The proposed algorithm consists of four stages. At the first stage, we solve the aggregated problem that is the crude classical economic dispatch problem without considering transmission losses. An initial solution is obtained by the aggregation concept in which the solution satisfies the power balance equations and generation capacity constraints. Then, after load flow analysis, the transmission losses of an initial generation setting are matched by the slack bus generator that produces power with the cheapest cost. At the second stage we consider transmission losses. Formulation of the second stage becomes classical economic dispatch problem involving the transmission losses, which are distributed to all generators. Once a feasible solution is obtained from the second stage, transmission capacity and other violations are checked and corrected locally and quickly at the third stage. The fourth stage fine tunes the solution of the third stage to reach a real minimum. The proposed approach speeds up the two stage optimization method to an average gain of 2.99 for IEEE 30, 57, and 118 bus systems and EPRI Scenario systems A through D testings.

  • PDF

고속의 유효전력 최적조류계산 알고리즘 (A Fast Optimization Algorithm for Optimal Real Power Flow)

  • 송경빈;김홍래
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 C
    • /
    • pp.926-928
    • /
    • 1998
  • A fast optimization algorithm has been evolved from a simple two stage optimal power flow(OPF) algorithm for constrained power economic dispatch. In the proposed algorithm, we consider various constraints such as power balance, generation capacity, transmission line capacity, transmission losses, security equality, and security inequality constraints. The proposed algorithm consists of four stages. At the first stage, we solve the aggregated problem that is the crude classical economic dispatch problem without considering transmission losses. An initial solution is obtained by the aggregation concept in which the solution satisfies the power balance equations and generation capacity constraints. Then, after load flow analysis, the transmission losses of an initial generation setting are matched by the slack bus generator that produces power with the cheapest cost. At the second stage we consider transmission losses. Formulation of the second stage becomes classical economic dispatch problem involving the transmission losses, which are distributed to all generators. Once a feasible solution is obtained from the second stage, transmission capacity and other violations are checked and corrected locally and quickly at the third stage. The fourth stage fine tunes the solution of the third stage to reach a real minimum. The proposed approach speeds up the coupled LP based OPF method to an average gain of 53.13 for IEEE 30, 57, and 118 bus systems and EPRI Scenario systems A through D testings.

  • PDF

Power Loss and Junction Temperature Analysis in the Modular Multilevel Converters for HVDC Transmission Systems

  • Wang, Haitian;Tang, Guangfu;He, Zhiyuan;Cao, Junzheng
    • Journal of Power Electronics
    • /
    • 제15권3호
    • /
    • pp.685-694
    • /
    • 2015
  • The power loss of the controllable switches in modular multilevel converter (MMC) HVDC transmission systems is an important factor, which can determine the design of the operating junction temperatures. Due to the dc current component, the approximate calculation tool provided by the manufacturer of the switches cannot be used for the losses of the switches in the MMC. Based on the enabled probabilities of each SM in an arm, the current analytical models of the switches can be determined. The average and RMS currents can be obtained from the corresponding current analytical model. Then, the conduction losses can be calculated, and the switching losses of the switches can be estimated according to the upper limit of the switching frequency. Finally, the thermal resistance model of the switches can be utilized, and the junction temperatures can be estimated. A comparison between the calculation and PSCAD simulation results shows that the proposed method is effective for estimating the junction temperatures of the switches in the MMC.

An Improved Dynamic Programming Approach to Economic Power Dispatch with Generator Constraints and Transmission Losses

  • Balamurugan, R.;Subramanian, S.
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권3호
    • /
    • pp.320-330
    • /
    • 2008
  • This paper presents an improved dynamic programming (IDP) approach to solve the economic power dispatch problem including transmission losses in power systems. A detailed mathematical derivation of recursive dynamic programming approach for the economic power dispatch problem with transmission losses is presented. The transmission losses are augmented with the objective function using price factor. The generalized expression for optimal scheduling of thermal generating units derived in this article can be implemented for the solution of the economic power dispatch problem of a large-scale system. Six-unit, fifteen-unit, and forty-unit sample systems with non-linear characteristics of the generator, such as ramp-rate limits and prohibited operating zones are considered to illustrate the effectiveness of the proposed method. The proposed method results have been compared with the results of genetic algorithm and particle swarm optimization methods reported in the literature. Test results show that the proposed IDP approach can obtain a higher quality solution with better performance.

무효전력조류의 최적제어에 의한 전력손실 최소화 연구 (Minimizing Power Transmission Losses by Optimum Control of Reactive Power Flow)

  • 김준현;유석구
    • 전기의세계
    • /
    • 제28권10호
    • /
    • pp.41-47
    • /
    • 1979
  • The paper develops a method of minimizing power transmission losses by optimum control of reactive power flow. In the past, because the optimizing method considers as the first step the minimization of node voltage deviations and as the second step the minimization of transmission losses within the system, the calculating procedure was more complex and difficult to handle. In this paper, a new computing method for real time control on a digital computer is described which aims at a coordinated use of reactive power sources and voltage regulating devices. The power transmission losses are minimized by a gradient method while satisfying the constrained system voltage conditions and sensitivity parameters are the basis of the method.

  • PDF

Harmonic Distortion Contribution for the Transmission Loss Allocation in Deregulated Energy Market: A New Scheme for Industry Consumer

  • Nojeng, Syarifuddin;Hassan, Mohammad Yusri;Said, Dalila Mat;Abdullah, Md.Pauzi;Hussin, Faridah
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권1호
    • /
    • pp.1-7
    • /
    • 2015
  • The industry has rapidly growth and energy supply technology advanced are become main factor which to contribute of the harmonic losses. This problem is one aspect that may affect the capability of the transmission line and also to the efficiency of electricity. This paper proposes a new scheme to allocate the cost pertaining to transmission loss due to harmonics. The proposed method, called as Generalized Harmonic Distribution Factor, uses the principle of proportional sharing method to allocate the losses among the transmission users especially for industry consumers. The IEEE 14- and 30 bus test system is used to compare the proposed method with existing method. The results showed that the proposed method provided a scheme better in allocating the cost of transmission loss, which could encourage the users to minimize the losses.

A Simple Model for TCP Loss Recovery Performance over Wireless Networks

  • Kim, Beomjoon;Lee, Jaiyong
    • Journal of Communications and Networks
    • /
    • 제6권3호
    • /
    • pp.235-244
    • /
    • 2004
  • There have been a lot of approaches to evaluate and predict transmission control protocol (TCP) performance in a numerical way. Especially, under the recent advance in wireless transmission technology, the issue of TCP performance over wireless links has come to surface. It is because TCP responds to all packet losses by invoking congestion control and avoidance algorithms, resulting in degraded end-to-end performance in wireless and lossy systems. By several previous works, although it has been already proved that overall TCP performance is largely dependent on its loss recovery performance, there have been few works to try to analyze TCP loss recovery performance with thoroughness. In this paper, therefore, we focus on analyzing TCP's loss recovery performance and have developed a simple model that facilitates to capture the TCP sender's behaviors during loss recovery period. Based on the developed model, we can derive the conditions that packet losses may be recovered without retransmission timeout (RTO). Especially, we have found that TCP Reno can retransmit three packet losses by fast retransmits in a specific situation. In addition, we have proved that successive three packet losses and more than four packet losses in a window always invoke RTO easily, which is not considered or approximated in the previous works. Through probabilistic works with the conditions derived, the loss recovery performance of TCP Reno can be quantified in terms of the number of packet losses in a window.