• Title/Summary/Keyword: transmission lines

Search Result 1,304, Processing Time 0.031 seconds

A Metamodeling Approach for Leader Progression Model-based Shielding Failure Rate Calculation of Transmission Lines Using Artificial Neural Networks

  • Tavakoli, Mohammad Reza Bank;Vahidi, Behrooz
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.760-768
    • /
    • 2011
  • The performance of transmission lines and its shielding design during a lightning phenomenon are quite essential in the maintenance of a reliable power supply to consumers. The leader progression model, as an advanced approach, has been recently developed to calculate the shielding failure rate (SFR) of transmission lines using geometrical data and physical behavior of upward and downward lightning leaders. However, such method is quite time consuming. In the present paper, an effective method that utilizes artificial neural networks (ANNs) to create a metamodel for calculating the SFR of a transmission line based on shielding angle and height is introduced. The results of investigations on a real case study reveal that, through proper selection of an ANN structure and good training, the ANN prediction is very close to the result of the detailed simulation, whereas the Processing time is by far lower than that of the detailed model.

Calculation on the Ion Flow Field under HVDC Transmission Lines Considering Wind Effects

  • Wu, Jing;Gao, Sheng;Liu, Yuxiao
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2077-2082
    • /
    • 2015
  • Based on Deutsch assumption, a calculation method on the electric field over the ground surface under HVDC transmission lines in the wind is proposed. Analyzing the wind effects on the electric field and the space charge density the existing method based on Deutsch assumption is improved through adding the wind speed to the ion flow field equations. The programming details are illustrated. The calculation results at zero wind speed are compared with available data to validate the code program. Then the ionized fields which resulted from corona of ±800kV HVDC lines are analyzed. Both the electric field and the current density on the ground level are computed under different wind direction and speed. The computation results are in good agreement with measurements. The presented method and code program can be used to rapidly predict and evaluate the wind effects in HVDC transmission engineering.

Pulse Propagation Analysis of High Speed Transmission Lines using the Phenomenological Loss Equivalence Method (현상학적 도체 손실 등가 기법을 이용한 고속 전송선의 펄스 전송 특성 해석)

  • 홍정기;이해영;민형복
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.25-37
    • /
    • 1995
  • The phenomenological loss equivalence method incorporated into the wideband lossy transmission line model is applied to the characterization of high desity digital transmission lines. The pulse propagation characteristics are analyzed using the calculated frequency characteristics and the discrete Fourier transformation. This approach has been verified by comparing the calculated frequency characteristics with the FEM and the esperimental results. This method is very suitable for computer-aided analysis of high density/high speed interconnection circuits because of the simple calculation as well as the calculation accuracy. We have found that pulse ftransmission speed and dispersion of hgih density digital transmission lines can be optimized by managing the conductor and dielectric losses in addition to the impedance matching.

  • PDF

Effect of Phase Arrangement on Magnetic Field of Overhead Transmission Lines (송전선로의 상배열이 자계 크기에 미치는 영향)

  • Kim, Sang-Beom;Lee, Dong-Il;Shin, Koo-Yong;Kim, Jeong-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1998.07e
    • /
    • pp.1678-1680
    • /
    • 1998
  • The purpose of this study is to obtain optimum arrangement of phase conductors in minimizing magnetic field from overhead transmission lines. Data of the transmission lines rated 345 kV of the KEPCO(Korea Electric Power Company)'s system were used. For a three phase-double circuit transmission line, low-reactance arrangement is optimum in minimizing magnetic fields. For a three phase-four circuit, optimum phase arrangement is a-b-c-b-a-c(lower two circuits, clockwise)/b-c-a-c-a-b(upper two circuits, clockwise).

  • PDF

An Optimal Rescheduling of Power Generation to Constrain the EM Field Emitted from Power Transmission Lines (송전선로에서 발생하는 전자계 제약을 고려한 발전력의 최적 재분배)

  • Kim, Jong-Hyeong;Sin, Myeong-Cheol;Ra, Wan-Su;Park, Il-Han
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.50 no.10
    • /
    • pp.464-471
    • /
    • 2001
  • Power utilities must satisfy both supplying high quality power economically and reducing EMF levels. In general, in order to reduce EMF levels from transmission line, it is effective to install shielding wires, configure wires with minimal space or modify structure of other conductors, etc., but these techniques require much cost and time. To some extent, the EMF levels associated with critical transmission lines can be reduced by redistributing the scheduled power generation, since it can change the power flows. There this technique can be readily applied without modifying other structures. This paper considers the OPF(Optimal Power Flow) with the EMF constraints in transmission lines to determine the power generation redistributions and demonstrates numerically the effectiveness of the approach.

  • PDF

Field Observation and Analysis of Wind-Induced Vibrations in Four-Bundled Conductor Transmission Lines

  • Sohn, Hong-Kwan;Lee, Hyung-Kwon;Chu, Jang-Hee;Lee, Dong-Il;Lee, Eun-Woong
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.2
    • /
    • pp.109-114
    • /
    • 2003
  • This paper presents observations made on four-bundled conductor transmission lines concerning the behavior of conductors under the effect of natural winds. To know the wind-induced vibration status and how to control it, wind-induced vibrations have been recorded and analyzed from the real transmission lines. From the field observation and analysis results, subspan oscillation was found to be the main type of vibration. In addition, the data also revealed some common characteristics of the observation sites with high maintenance rates. The results will be used in controlling the subspan oscillations and protecting the conductors.

Modified Wilkinson Power Divider Using Transmission Lines for Various Terminated Impedances and an Arbitrary Power Ratio

  • Yoon, Young-Chul;Kim, Young
    • Journal of electromagnetic engineering and science
    • /
    • v.19 no.1
    • /
    • pp.42-47
    • /
    • 2019
  • This paper introduces a modified Wilkinson power divider that uses uniform transmission lines for various terminated impedances and an arbitrary power ratio. For the designed power ratio, the proposed divider changes only the electrical lengths of the transmission lines between the input and output ports, and those between the output ports and the isolation resistor. In this case, even when various termination impedances of the ports exist, the divider characteristics are satisfied. To verify the feasibility of the proposed divider, two circuits were designed to operate at a frequency of 2 GHz with 2:1 and 4:1 power splitting ratios and various terminated impedances of 40, 70, and $60{\Omega}$ for one circuit, and 50, 70, and $60{\Omega}$ for the other. The measurement and simulation results were in good agreement.

Conceptual Design and Application of HTS Power Transmission Cable (고온초전도 전력케이블 설계 및 계통적용)

  • 조전욱;성기철;김해종;이언용;류강식;박종수
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.129-133
    • /
    • 1999
  • In recent years, there is a growing needs for large capacity underground power transmission lines with the increasing demand of electric power in the urban area, where various environmental limitations are imposed on the overhead transmission lines. But it is difficult to get the space for the underground power transmission cables because of complicated distributions of underground public facilties such as subway, water pipes, gas etc. As the superconducting power cables have the large power transmission capacity, the high power transmission capacity, the high power transmission density, and low loss characteristics in comparison with a conventional cable, it would be a solution to meet the increased power demand. In this paper, the results of the conceptual design and analysis of power system of HTS power transmission cable is described.

  • PDF

A Study on the Transient Analysis of Coupled Lines and Ability of Crosstalk Suppression Inherent to Nonuniform Lines (결합선로의 과도해석과 불균일선로에 잠재된 누화 억압 능력에 관한 연구)

  • 권중훈;이병희;박의준
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.3
    • /
    • pp.464-473
    • /
    • 2000
  • The method is presented which predicts voltage waveforms at each nodes inter-connected arbitrarily on the coupled transmission lines by extracting the node connection condition to be included in the modal telegrapher's equation, hence analyzing the mechanism of waveform propagation on transmission lines. It is shown that it is also possible to analyze efficiently the coupled nonuniform lines. And then the nonuniformity of coupled lines is demonstrated for suppressing the crosstalk spikes using the one-dimensional inverse-scattering control theory. The predicted waveforms by presented method are analyzed and verified by comparison with those by the generalized S-parameter technique.

  • PDF

A Novel Algorithm for Fault Classification in Transmission Lines Using a Combined Adaptive Network and Fuzzy Inference System

  • Yeo, Sang-Min;Kim, Chun-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • v.3A no.4
    • /
    • pp.191-197
    • /
    • 2003
  • Accurate detection and classification of faults on transmission lines is vitally important. In this respect, many different types of faults occur, such as inter alia low impedance faults (LIF) and high impedance faults (HIF). The latter in particular pose difficulties for the commonly employed conventional overcurrent and distance relays, and if undetected, can cause damage to expensive equipment, threaten life and cause fire hazards. Although HIFs are far less common than LIFs, it is imperative that any protection device should be able to satisfactorily deal with both HIFs and LIFs. Because of the randomness and asymmetric characteristics of HIFs, their modeling is difficult and numerous papers relating to various HIF models have been published. In this paper, the model of HIFs in transmission lines is accomplished using the characteristics of a ZnO arrester, which is then implemented within the overall transmission system model based on the electromagnetic transients program (EMTP). This paper proposes an algorithm for fault detection and classification for both LIFs and HIFs using Adaptive Network-based Fuzzy Inference System (ANFIS). The inputs into ANFIS are current signals only based on Root-Mean-Square (RMS) values of 3-phase currents and zero sequence current. The performance of the proposed algorithm is tested on a typical 154 kV Korean transmission line system under various fault conditions. Test results demonstrate that the ANFIS can detect and classify faults including LIFs and HIFs accurately within half a cycle.