• Title/Summary/Keyword: transmission dynamics

Search Result 234, Processing Time 0.026 seconds

Modeling of transmission pathways on canine heartworm dynamics

  • Seo, Sat Byul
    • Korean Journal of Veterinary Research
    • /
    • v.60 no.1
    • /
    • pp.15-18
    • /
    • 2020
  • Canine heartworm disease is a vector-borne disease that is transmitted from dog to dog by mosquitoes. It causes epidemics that disrupt the health environments of dogs and are burdensome for many dog owners. Recent trends of changing temperatures and weather conditions in South Korea may have an impact on the population of mosquitoes, and it affects the population of dogs at risk of heartworm infection. Mathematical modeling has become an important measure for analyzing the epidemiological characteristics of infectious diseases. However, canine heartworm infection transmission has not been reported yet through mathematical modeling. We develop a mathematical model of canine heartworm infection to predict the population of infected dogs depending on the vector (mosquito) population using a susceptible, exposed, infected, and recovered model. Simulation results show that after 1 year, 3,289 dogs out of 73,602 (about 4.5%) are exposed and 134 (about 0.2%) are infected. Only 0.2% of susceptible dogs become infected after 1 year. However, if all exposed dogs are maintained in the same circumstances without any treatment, then the number of infected subjects will increase over time. This may increase the possibility of other dogs, especially dogs that live outside, being infected.

Floating Gas Power Plants

  • Kim, Hyun-Soo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.6_1
    • /
    • pp.907-915
    • /
    • 2020
  • Specification selection, Layout, specifications and combinations of Power Drives, and Ship motions were studied for FGPP(Floating Gas-fired Power Plants), which are still needed in areas such as the Caribbean, Latin America, and Southeast Asia where electricity is not sufficiently supplied. From this study, the optimal equipment layout in ships was derived. In addition, the difference between engine and turbine was verified through LCOE(Levelized Cost of Energy) comparison according to the type and combination of Power Drives. Analysis of Hs(Significant Height of wave) and Tp(spectrum Peak Period of wave) for places where this FGPP will be tested or applied enables design according to wave characteristics in Brazil and Indonesia. Normalized Sloshing Pressures of FGPP and LNG Carrier are verified using a sloshing analysis program, which is CFD(Computational Fluid Dynamics) software developed by ABS(American Bureau of Shipping). Power Transmission System is studied with Double bus with one Circuit Breaker Topology. A nd the CFD analysis allowed us to calculate linear roll damping coefficients for more accurate full load conditions and ballast conditions. Through RAO(Response Amplitude Operator) analysis, we secured data that could minimize the movement of ships according to the direction of waves and ship placement by identifying the characteristics of large movements in the beam sea conditions. The FGPP has been granted an AIP(Approval in Principle) from a classification society, the ABS.

Molecular characteristics of ESBL-producing Escherichia coli isolated from chickens with colibacillosis

  • Yoon, Sunghyun;Lee, Young Ju
    • Journal of Veterinary Science
    • /
    • v.23 no.3
    • /
    • pp.37.1-37.8
    • /
    • 2022
  • Background: Avian pathogenic Escherichia coli (APEC) causes colibacillosis, resulting in significant economic losses in the poultry industry. Objectives: In this study, the molecular characteristics of two extended-spectrum beta-lactamase (ESBL)-producing APEC isolates were compared with previously reported ESBL-producing E. coli isolates. Methods: The molecular characteristics of E. coli isolates and the genetic environments of the ESBL genes were investigated using whole genome sequencing. Results: The two ESBL-producing APEC were classified into the phylogenetic groups C and B1 and ST410 and ST162, respectively. Moreover, the ESBL genes of the two isolates were harbored in different Inc plasmids. The EC1809182 strain, harboring the blaCTX-M-55 gene on the plasmid, exhibited extensive homology to IncFIB (98.4%) and IncFIC(FII) (95.8%). The EC1809191 strain, harboring the blaCTX-M-1 gene, was homologous to IncI1-I (Gamma) (99.3%). All chromosomes carried the multidrug transporter, mdf(A) gene. Mobile genetic elements, adjacent to CTX-M genes, facilitated the dissemination of genes in the two isolates, analogous to other ESBL-producing E. coli isolates. Conclusions: This study clarifies the transmission dynamics of CTX-M genes and supports strengthened surveillance to prevent the transmission of the antimicrobial-resistant genes to humans via the food chain.

Study on the Dynamic Characteristics of a Manual Transmission Using Linear Models (선형모델을 이용한 수동변속기의 동적 특성 연구)

  • Yoon, Jong-Yun;Lee, Iljae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.240-248
    • /
    • 2013
  • Torsional vibrations, such as the gear rattle of the manual transmission in vehicle systems, are correlated with the firing stroke from the engine. These vibro-impacts can be examined based upon linear time-invariant analysis. In order to understand the gear dynamics, a specific manual transmission with a front-engine front-wheel drive configuration is investigated. A method to reduce the degrees of freedom is suggested based upon the eigensolutions and frequency response functions, which will lead to the development of an efficient matrix size. The dynamic characteristics of single- and dual-mass flywheels are then compared. The effect of the dual-mass flywheel is investigated based upon the mobility analysis, which will lead to understanding of the concepts for avoiding vibro-impacts. A linear time-invariant system model is examined by employing the effective clutch stiffness from a two-stage clutch damper. Thus, the relationship between the dynamic characteristics and the clutch damper can be predicted by assuming a combination of different stage stiffness levels.

Effect of Angle and Density of Grooves between Friction Plate Segments on Drag Torque in Wet Clutch of Automatic Transmission (마찰재 그루브에 따른 습식 클러치 드래그 토크 변화 연구)

  • Ryu, Jin Seok;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.30 no.2
    • /
    • pp.71-76
    • /
    • 2014
  • As the importance of transmission efficiency to reducing fuel consumption and conserving the environment rapidly increases, reducing the drag torque in an automotive wet clutch is emerging as an important issue in the automotive industry. The drag torque in a clutch occurs from viscous drag generated by automatic transmission fluid in the narrow gap between separate friction plates. In this study, the drag torques in an automotive wet clutch are investigated with respect to the angle and density of the grooves between separate friction plates by three-dimensional finite element simulation of a single set of wet clutch disks considering the two-phase flow of air and oil. The simulation results shows that the drag torque generally increases with the rotational speed to a critical point and then decreases at the high-speed regime. The grooves between the plates plays an important role in reducing the drag peak, and the inclined angle of the grooves affects the oil flow. The grooves with an angle of $50^{\circ}$ shows the lowest drag torques at both low and high speeds. The flow vectors inside the $50^{\circ}$ grooves shows clear evidence that the fluid flows out more easily from the grooves compared with the flow vectors inside grooves with lower angles. The simulation results shows that increasing the number of grooves (density of grooves) decreases the drag torque.

Prevalence of Cystic Echinococcosis in Slaughtered Sheep as an Indicator to Assess Control Progress in Emin County, Xinjiang, China

  • Yang, Shijie;Wu, Weiping;Tian, Tian;Zhao, Jiangshan;Chen, Kang;Wang, Qinyan;Feng, Zheng
    • Parasites, Hosts and Diseases
    • /
    • v.53 no.3
    • /
    • pp.355-359
    • /
    • 2015
  • Hydatid disease imposing serious threat on human health and great loss in live-stock pastoralism remains a major public health problem in western China. To assess and monitor the effect of control program on transmission dynamics, we used the prevalence of cystic echinococcosis in slaughtered sheep at slaughterhouse as an indicator during the period of 2007 to 2013 in Emin County, Xinjiang Uygur Autonomous Region, China. The results showed a significant decline trend of prevalence in all age groups during the 7 years when the control program was implemented; particularly, the rate was reduced by 72% after first 3 years. Among the sheep slaughtered, the age distribution evidenced that the prevalence increased significantly as the sheep grew older. The baseline data indicated that the rate was 4.5% at the age <1, 6.7% at age 2~, and reached to the highest 17.9% at age ${\geq}4$ years. Earlier response to the intervention pressure was seen in the sheep at the younger age. Significant decline started from 2008 at the age <1, from 2009 at age of 1~, 2010 at 2~ to 3~, and the latest, in 2012 at age ${\geq}4$. This study demonstrated that the prevalence of cystic echinococcosis in slaughtered sheep may be used as an indicator to assess and monitor the transmission status during and after control program providing information for betterment of performance to sustain control strength.

Optimal Engine Operation by Shift Speed Control of a CVT

  • Lee, Heera;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.7
    • /
    • pp.882-888
    • /
    • 2002
  • In this paper, an algorithm to increase the shift speed is suggested by increasing the line pressure for a metal belt CVT. In order to control the shift speed, an algorithm to calculate the target shift speed is presented from the modified CVT shift dynamics. In applying the shift speed control algorithm, a criterion is proposed to prevent the excessive hydraulic loss due to the increased line pressure. Simulations are performed based on the dynamic models of the hydraulic control valves, powertrain and the vehicle. It is found from the simulation results that performance of the engine operation can be improved by the faster shift speed, which results in the improved fuel economy by 2% compared with that of the conventional electronic control CVT in spite of the increased hydraulic loss due to the increased line pressure.

STABILITY ANALYSIS OF A HOST-VECTOR TRANSMISSION MODEL FOR PINE WILT DISEASE WITH ASYMPTOMATIC CARRIER TREES

  • Lashari, Abid Ali;Lee, Kwang Sung
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.987-997
    • /
    • 2017
  • A deterministic model for the spread of pine wilt disease with asymptomatic carrier trees in the host pine population is designed and rigorously analyzed. We have taken four different classes for the trees, namely susceptible, exposed, asymptomatic carrier and infected, and two different classes for the vector population, namely susceptible and infected. A complete global analysis of the model is given, which reveals that the global dynamics of the disease is completely determined by the associated basic reproduction number, denoted by $\mathcal{R}_0$. If $\mathcal{R}_0$ is less than one, the disease-free equilibrium is globally asymptotically stable, and in such a case, the endemic equilibrium does not exist. If $\mathcal{R}_0$ is greater than one, the disease persists and the unique endemic equilibrium is globally asymptotically stable.

HWILS Implementation of TCS Control System Based on Throttle Adjustment Approach (스로틀 조절 방식에 기초한 TCS 슬립 제어 시스템의 HWILS 구현)

  • 송재복;홍동우
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.3
    • /
    • pp.45-53
    • /
    • 1998
  • Traction control systems(TCS) improve vehicle acceleration performance and stability, particularly on slippery roads through engine torque and/or brake torque control. This research mainly deals with the engine control algorithm based on adjustment of the engine throttle valve opening. Hardware-in-the-loop simulation(HWILS) is carried out where the actual hardware is used for the engine/automatic transmission and TCS controller, while various vehicle dynamics are simulated on real-time basis. Also, use of the dynamometer is made in order to implement the tractive force that a road applies to the tire. Although some restrictions are imposed mainly due to the capability of the synamometer, simplified HWILS results show that the slip control algorithm can improve the vehicle acceleration performance for low-friction roads.

  • PDF

Implementation of a CAN Based Real-Time Simulator for FCHEV (하이브리드 연료전지 자동차의 CAN기반 실시간 시뮬레이터 구현)

  • Shim, Seong-Yong;Lee, Nam-Su;Ahn, Hyun-Sik;Kim, Do-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.410-413
    • /
    • 2004
  • In this paper, a simulator system for Fuel Cell Hybrid Electric Vehicles(FCHEV) is implemented using DSP boards with CAN bus. The subsystems of a FCHEV i.e., the fuel cell system, the battery system, the vehicle dynamics with the transmission mechanism are coded into 3 DSP boards. The power distribution control algorithm and battery SOC control are also coded into a DSP board. The real-time monitoring program is also developed to examine the control performance of power control and SOC control algorithms.

  • PDF