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STABILITY ANALYSIS OF A HOST-VECTOR

TRANSMISSION MODEL FOR PINE WILT DISEASE

WITH ASYMPTOMATIC CARRIER TREES

Abid Ali Lashari and Kwang Sung Lee

Abstract. A deterministic model for the spread of pine wilt disease
with asymptomatic carrier trees in the host pine population is designed

and rigorously analyzed. We have taken four different classes for the

trees, namely susceptible, exposed, asymptomatic carrier and infected,
and two different classes for the vector population, namely susceptible and

infected. A complete global analysis of the model is given, which reveals
that the global dynamics of the disease is completely determined by the

associated basic reproduction number, denoted by R0. If R0 is less than

one, the disease-free equilibrium is globally asymptotically stable, and in
such a case, the endemic equilibrium does not exist. If R0 is greater than

one, the disease persists and the unique endemic equilibrium is globally

asymptotically stable.

1. Introduction

Pine wilt disease (PWD) is vector-borne disease as known in plant pathol-
ogy. There are some important wilting diseases of trees, such as the pine wilt
disease and the red ring disease of palms, which are caused by nematodes
that have intriguing association with insect vectors ([7]). Pine wilt is caused
by the pinewood nematode, Bursaphelenchus xylophilus (Steiner and Buhrer)
Nickle whose synonym is Bursaphelenchus lignicolus ([8], [15]). The nematode
is transmitted by cerambycid beetles of the genus Monochamus which serve as
vector ([14], [16], [21]). The pinewood nematode has spread to the Far East
(Japan, China and Korea), North America (USA and Canada) and Portugal
and has devastated pine forest ecosystems ([23]). Nowadays pine wilt disease
(PWD) caused by the pine wood nematode is the most serious threat to pine
forests systems worldwide. PWD was ranked first on the 1986 quarantine list
published by the European Plant Protection Organization; quarantining has
caused international disputes in the lumber trade ([17]).
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The vector beetle, M. alternatus, emerges from the dead pine trees carrying
pathogenic nematodes in late May to early July, and feeds on young twigs of
healthy pines. Through the feeding wounds of the vector beetle, nematodes
invade the host pine trees. Nematode infection results in cessation of oleoresin
exudation in 2-3 weeks as an early symptom of disease, after which nematode
populations increase rapidly and spread through the wood tissue, causing the
pine to wilt. Most trees die within the year of infection, showing reddish-brown
foliage, though a small number of infected trees succumb to the disease early
in the next year ([22]). PWD control has focused mainly on elimination of
pine sawyer larvae inhabiting wilt pine trees, either by winter fumigation or by
controlling the adult sawyers with aerial insecticide spray in summer. Despite
intensive efforts to remove dead pine trees from the stands, newly dead trees
tend to appear in the vicinity of the stumps of trees killed the previous year,
and pine wilt disease recurs in the same pine stand every year ([6], [9])

An asymptomatic carrier tree could be defined as a tree that harbors B. xy-
lophilus but shows no apparent symptoms such as needle chlorosis or browning,
and may or may not cease oleoresin exudation. They could play a significant
role as attractants for M.alternatus that could then transmit B. xylophilus
to neighboring trees. The spread and occurrence of PWD are influenced by
many factors, including meteorological conditions, the flight ability of vector
beetles, soil eutrophication, topographic conditions, mycorrhizal relationships,
asymptomatic carrier trees, and human activities ([4], [5]).

Recently, many mathematical models have been used to investigate the
transmission dynamics of pine wilt disease ([19], [20]). In these papers, au-
thors have worked on modeling of population dynamics of the vector beetle
(Monochamus alternatus) and the pine tree to explore expansion of the dis-
ease using an integro-difference equation with a dispersal kernel that describes
beetle mobility. Furthermore, there are many mathematical works which de-
scribe the host-vector relationship between pine trees and pine sawyer beetles
by means of ordinary differential equations ([11], [12], [13], [18]).

In this paper, we extend the model presented in ([12], [13]) by taking into
account the role of asymptomatic carrier trees. We treat a PWD transmission
model with asymptomatic carrier trees. We shall investigate the global stability
of both the disease-free equilibrium and endemic equilibrium by constructing
suitable Lyapunov functions. If R0 is less than one, the disease-free equilibrium
is globally asymptotically stable, and in such a case, the endemic equilibrium
does not exist. If R0 is greater than one, the disease persists and the unique
endemic equilibrium is globally asymptotically stable. The dynamics of the host
pine trees and vector beetles is described by SEAI and SI models, respectively.

The organization of the paper is as follows. In Section 2, a model for the
dynamics of pine wilt disease is formulated. The stability of disease free equi-
librium and the stability of endemic equilibrium are investigated in Sections 3
and 4, respectively. Lastly, we give a brief discussion of our results in Section
5.
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2. Formulation of the model

In this section, we formulate a mathematical model for the spread of pine
wilt disease with asymptomatic carrier trees in the host pine population. We
formulate a mathematical model for PWD in the host pine and vector beetles
population with total population size at time t, given by Nh and Nv, respec-
tively. The total host population is divided into four subclasses: susceptible
host pine tree, exposed host pine tree, asymptomatic carrier host pine tree and
infected host pine tree denoted by Sh, Eh, Ah, Ih, respectively. Susceptible
host pines are those trees which are healthy and have the potential to be in-
fected by the nematode. Healthy trees emit oleoresin, which acts as a physical
barrier to beetle oviposition. Exposed host pine trees are the ones which have
been infected by the nematode, but still possess the capability for oleoresin
production. An asymptomatic carrier host pine tree shows no apparent symp-
toms and may or may not cease oleoresin exudation. The infected host pine
trees are those trees which have been infected by the nematode and have lost
the ability to exude oleoresin, and hence, beetles can oviposit on them. The
susceptible adult beetles who do not carry pinewood nematode at time t are
denoted by Sv, and the infective adult beetles who carry pinewood nematode
at time t are given by Iv. Thus, Nh = Sh + Eh + Ah + Ih. The pine sawyer
vector population Nh has subclasses Sv and Iv for the susceptible and infected
subclasses, respectively. Thus Nv = Sv + Iv.

The parameters used in the system are as follows: the parameter Λh is the
constant increase rate of pine tree at time t and Λv is the constant emergence
rate of adult beetles at time t during the period of emergence. The per capita
natural death rate of pine trees and beetles (as vectors) is given by µh and µv,
respectively.

The parameter α represents the transmission rate per contact with infected
vectors during maturation feeding. The parameter φ is the average number of
contact per day of the vector adult beetles during maturation feeding period.
The incidence of new infections via this route is given by the mass actions
term αφShIv. The transmission probability by which infected beetles transmit
nematodes by oviposition is denoted by β and ψ is the average number of
contact per day when adult beetles oviposit. The parameter θ is the probability
that susceptible host pine trees cease oleoresin exudation without being infected
by the nematode. In the model, the term βψθShIv denotes the rate at which
the host pine trees cease oleoresin exudation without being infected by the
nematode. The parameter γ is the rate at which adult beetles have pinewood
nematode when the beetles escape from dead trees. The incidence terms for
vector populations is given by the mass action term γIhSv. The constant per-
capita rate, k, models progression from the exposed class Eh to the either the
Ah or Ih infected class; the constant ρ(0 < ρ < 1) budgets the rate of progress
of individuals which move to either the Ih class or to the asymptomatic carrier
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trees Ah at the per capita rate k. The flow chart of the disease dynamics is
presented in Figure 1.

Sh

Λh

Ah

Eh

Ih

Iv Sv

µhSh

κ(1 − ρ)Eh

αφShIv

βψθShIh

κρEh

γSvIh

µhIh

µhEh

µhAh

µvIv

Λv

µvSv

Figure 1. The flow diagram for pine wilt transmission illustrating the
transmission of disease in trees and vectors. The continuous red line rep-

resents transmission rate of infection, the dashed line represents the death

rates, Λh and Λv are recruitment rates of trees and vectors, respectively,
while the continuous black line represents the transition between different

compartments.

The following system of coupled nonlinear differential equations, derived on
the basis of parameter definitions and assumptions, describe the dynamics of
the PWD:

dSh
dt

= Λh − αφShIv − βψθShIv − µhSh,

dEh
dt

= αφShIv − (k + µh)Eh,

dAh
dt

= k(1− ρ)Eh − µhAh,(1)

dIh
dt

= kρEh + βψθShIv − µhIh,

dSv
dt

= Λv − γIhSv − µvSv,

dIv
dt

= γIhSv − µvIv.
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In our proposed model (1), the total population of pine trees and beetles is
Sh+Eh+Ah+ Ih = Λh

µh
, and Sv + Iv = Λv

µv
, respectively, for all t ≥ 0, provided

that Sh(0) + Eh(0) +Ah(0) + Ih(0) = Λh

µh
, and Sv(0) + Iv(0) = Λv

µv
.

The feasible region for system (1) is R6
+(the positive orthant of R6). The

model (1) is obviously well-posed. The total host population dynamics is given

by dNh

dt = Λh − µhNh. The given initial conditions make sure that Nh(0) ≥ 0.

The total dynamics of vector population is dNv

dt = Λv − µvNv. We know

Nh(t)→ Λh

µh
, Nv(t)→ Λv

µv
.

Obviously,

Γ =

{
(Sh, Eh, Ah, Ih, Sv, Iv) ∈ R6

+ |Sh + Eh +Ah + Ih ≤
Λh
µh
, Sv + Iv ≤

Λv
µv

}
is positively invariant [2], system (1) is dissipative and the global attractor is
contained in Γ. On Γ, we have Sh = Λh

µh
− Eh − Ah − Ih and Sv = Λv

µv
− Iv.

Hence we will study the following four-dimensional nonlinear system:

(2)

dEh
dt

= αφ

(
Λh
µh
− Eh −Ah − Ih

)
Iv − (k + µh)Eh,

dAh
dt

= k(1− ρ)Eh − µhAh,

dIh
dt

= kρEh + βψθ

(
Λh
µh
− Eh −Ah − Ih

)
Iv − µhIh,

dIv
dt

= γIh

(
Λv
µv
− Iv

)
− µvIv,

in the invariant region

Ω =

{
(Eh, Ah, Ih, Iv) ∈ R4

+ | 0 ≤ Eh +Ah + Ih ≤
Λh
µh
, 0 ≤ Iv ≤

Λv
µv

}
.

The values of Eh and Sv can be determined correspondingly by Sh = Λh

µh
−

Eh −Ah − Ih and Sv = Λv

µv
− Iv, respectively. Possible equilibria of the system

(2) and their stability are explored here. The equilibria for our model are
determined by setting the right hand side of the model (2) equal to zero. The
system (2) admits two equilibrium points namely E0 = (0, 0, 0, 0) and E1 =
(E∗h, A

∗
h, I
∗
h, I
∗
v ), with

E∗h =
Λhαφ

(k + µh)(µh + αφI∗v + βψθI∗v )
I∗v ,(3)

A∗h =
Λhαφk(1− ρ)

µh(k + µh)(µh + αφI∗v + βψθI∗v )
I∗v ,

I∗h =
µvI

∗
v

γ(Λv

µv
− I∗v )

,
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I∗v =
µ2
hµ

2
v(k + µh)(R0 − 1)

µv

{
Λhγ{(k + µh)βψθ + αφkρ}+ µhµv(k + µh)(αφ+ βψθ)

} ,
where

R0 =
γΛhΛv
µ2
hµ

2
v

(
βψθ +

αφkρ

k + µh

)
.

The threshold quantity R0 is called the basic reproduction number, which is
defined as the average number of secondary infections produced by an infected
individual in a completely susceptible population. The carriers in our system
can have a great effect on R0. To see the effect of κ on R0, straightforward
computation gives

∂R0

∂κ
=
γΛhΛv
µhµ2

v

(
αφρ

(k + µh)2

)
and thus ∂R0

∂κ > 0. Similarly, R0 is an increasing function of β and θ. From this
analysis we see that a higher probability to develop carriage will increase R0.
Since the model deals with tree and beetle populations, it can easily be seen that
every state variable will remain nonnegative for non-negative initial conditions
(i.e, for all t ≥ 0, all the state variables and parameters of the model are
non-negative). Mathematical analysis of the model is carried out below.

3. Stability of the disease-free equilibrium

In this section, we study the stability of disease-free equilibrium. The local
asymptotic stability of the disease-free equilibrium is stated in the following
theorem.

Theorem 3.1. The disease free equilibrium E0 of model (2) is locally asymp-
totically stable whenever R0 < 1.

Proof. We linearize the system (2) around the disease free equilibrium E0. The
matrix of linearization at E0 is given by

J(E0) =


−(k + µh) 0 0 αφΛh

µh

k(1− ρ) −µh 0 0

kρ 0 −µh βψθΛh

µh

0 0 γΛv

µv
−µv

 .

One eigenvalue of J(E0) is −µh < 0. The other three eigenvalues are the
roots of the following equation

(4) λ3 + a1λ
2 + a2λ+ a3 = 0,

where

a1 = k + 2µh + µv,

a2 = (µh + µv)(µh + k) + µhµv −
βψθγΛhΛv
µhµv

,

a3 = µhµv(k + µh) (1−R0) .



STABILITY ANALYSIS OF A HOST-VECTOR TRANSMISSION MODEL 993

If R0 < 1, then a1 > 0, a2 > 0, a3 > 0 and a1a2 > a3. Thus, according to
the Routh-Hurwitz criterion ([1]), all of the eigenvalues of the characteristic
equation 4 have negative real parts. Hence the disease free equilibrium E0 is
locally asymptotically stable. �

Theorem 3.1 also implies that pine wilt disease can be eliminated from the
tree population (when R0 < 1) if the initial sizes of the subpopulations of
the model are in the basin of attraction of the disease-free equilibrium (E0).
To ensure that disease elimination is independent of the initial sizes of the
subpopulations, it is necessary to show that the disease-free equilibrium is
globally asymptotically stable if R0 < 1. This is explored in the following
theorem.

Theorem 3.2. The disease free equilibrium E0 of model (2) is globally asymp-
totically stable whenever R0 < 1.

Proof. To establish the global stability of the disease-free equilibrium, we define
the following Lyapunov function in Ω.

(5) L(t) = b1Eh + b2Ih + b3Iv

with

(6)

b1 =
Λvγkρ

µhµ2
v(k + µh)

,

b2 =
Λvγ

µhµ2
v

,

b3 =
1

µv
.

The time derivative of L (where a prime represents differentiation with re-
spect to t) is given by

L′(t) = b1E
′
h + b2I

′
h + b3I

′
v

≤ Λvγkρ

µhµ2
v(k + µh)

{
Λvαφ

µh
Iv − (k + µh)Eh

}
(7)

+
Λvγ

µhµ2
v

{
kρEh +

Λhβψθ

µh
Iv − µhIh

}
+

1

µv

{
Λvγ

µv
Ih − µvIv

}
= (R0 − 1)Iv ≤ 0.

Thus L′(t) ≤ 0 if R0 < 1 and L′ = 0 if and only if I = 0. Therefore, the
largest compact invariant set in {(Eh, Ah, Ih, Iv) ∈ Ω |L′ = 0} is the singleton
{E0}. Hence LaSalle’s invariance principle ([10]) implies that E0 is globally
asymptotically stable in Ω. This completes the proof. �

The epidemiological implication of the above result is that PWD will be
eliminated from the population if R0 can be brought to (and maintained at) a
value less than unity.
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4. Stability of the endemic equilibrium

In this section, we prove the global stability of the endemic equilibrium E1,
when the basic reproduction number R0 is greater than the unity. First, we
will prove the following result.

Theorem 4.1. If R0 > 1, then system (2) is uniformly persistent, i.e., there
exists c > 0 (independent of initial conditions), such that lim inft→∞Eh(t) ≥ c,
lim inft→∞Ah(t) ≥ c, lim inft→∞ Ih(t) ≥ c, lim inft→∞ Iv(t) ≥ c.

Proof. Let π be a semidynamical system (2) in (R+
0 )4, χ be a locally compact

metric space and Ω0 = {(Eh, Ah, Ih, Iv) ∈ Γ | Iv = 0}. The set Γ0 is a compact
subset of Ω0 and Ω/Ω0 is positively invariant set of system (2). Let P : χ →
R+

0 be defined by P (Eh, Ah, Ih, Iv) = Iv and set S = {(Eh, Ah, Ih, Iv) ∈ Ω |
P (Eh, Ah, Ih, Iv) < ρ}, where ρ is sufficiently small so that R0(1 − µv

Λv
ρ) > 1.

Assume that there is a solution x ∈ S such that for each t > 0, we have
P (π(x, t)) < P (x) < ρ. Let us consider the following:

L(t) =
Λh(αφkρ+ βψθ(k + µh))(1− δ∗)

µhµv(k + µh)
Iv + Ih,

where δ∗ > 0 is a sufficiently small constant so that R0(1− µv

Λv
ρ)(1− δ∗) > 1.

By a direct calculation, we have

L′(t) ≥ µh

[
ΛhΛvγ(αφkρ+ βψθ(k + µh))(1− δ∗)(1− µvρ

Λv
)

µ2
hµ

2
v(k + µh)

− 1

]
Ih

+
Λh(αφkρ+ βψθ(k + µh))δ∗

µ2
h(k + µh)

Iv.

Let

δ = min

{
µ1

[
ΛhΛvγ(αφ+ βψθ)(1− δ∗)(1− µ2ρ

Λv
)

µ2
1µ

2
2(k + µh)

− 1

]
,

µhδ
∗

µv(1− δ∗)

}
> 0.

Thus, we have

(8) L′(t) ≥ δL(t).

The above inequality (8) implies that L(t)→∞ as t→∞. However, L(t) is
bounded on the set Γ. According to Theorem 1 in ([3]), we complete the proof
of Theorem 4.1. �

Now, we investigate the global asymptotic stability of the unique endemic
equilibrium E1 when R0 > 1. The global asymptotic stability of the endemic
equilibrium is proved below.

Theorem 4.2. If R0 > 1, the endemic equilibrium E1 of model (2) is globally
asymptotically stable in Ω.
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Proof. We propose the following Lyapunov function

F(Sh, Eh, Ih, Sv, Iv) = c1

(
Sh − S∗h − S∗h ln

Sh
S∗h

)
+ c2

(
Eh − E∗h − E∗h ln

Eh
E∗h

)
+ c3

(
Ih − I∗h − I∗h ln

Ih
I∗h

)
+ c4

(
Sv − S∗v − S∗v ln

Sv
S∗v

)
(9)

+ c5

(
Iv − I∗v − I∗v ln

Iv
I∗v

)
,

where

(10)

c1 =
kρE∗h + βψθS∗hI

∗
v

S∗hI
∗
v (αφ+ βψθ)

,

c2 =
kρE∗h
αφS∗hI

∗
v

,

c3 = 1,

c4 = c5 =
kρE∗h + βψψθS∗hI

∗
v

γI∗hS
∗
v

.

The system (2) satisfy the following relations at equilibrium point

(11)

Λh = αφS∗hI
∗
v + βψθS∗hI

∗
v + µhS

∗
h,

k + µh =
αφS∗hI

∗
v

E∗h
,

µh =
kρE∗h + βψθS∗hI

∗
v

I∗h
,

Λv = γI∗hS
∗
v + µvS

∗
v ,

µv =
γI∗hS

∗
v

I∗v
.

Since, the arithmetic mean is greater than or equal to the geometric mean, we
have

(12)

S∗h
Sh

+
Sh
S∗h

E∗h
Eh

Iv
I∗v

+
Eh
E∗h

I∗h
Ih

+
Ih
I∗h

Sv
S∗v

I∗v
Iv

+
S∗v
Sv
≥ 5,

S∗h
Sh

+
Sh
S∗h

I∗h
Ih

Iv
I∗v

+
Ih
I∗h

Sv
S∗v

I∗v
Iv

+
S∗v
Sv
≥ 4.

Hence

F ′ = − µh
kρE∗h + βψθS∗hI

∗
v

S∗hI
∗
v (αφ+ βψθ)

(Sh − S∗h)2

Sh
− µv

kρE∗h + βψψθS∗hI
∗
v

γI∗hS
∗
v

(Sv − S∗v )2

Sv

+ kρ

(
5− S∗h

Sh
− Sh
S∗h

E∗h
Eh

Iv
I∗v
− Eh
E∗h

I∗h
Ih
− Ih
I∗h

Sv
S∗v

I∗v
Iv
− S∗v
Sv

)
(13)

+ βψθS∗hI
∗
v

(
4− S∗h

Sh
− Sh
S∗h

I∗h
Ih

Iv
I∗v
− Ih
I∗h

Sv
S∗v

I∗v
Iv
− S∗v
Sv

)
.
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Thus, it follows from (12) and (13) that F ′ ≤ 0 in Ω. The equality F ′ = 0
holds if and only if Sh = S∗h, Ah = A∗h, Eh = E∗h, Ih = I∗h, Sv = S∗v , Iv = I∗v in
Ω. The maximal compact invariant set in {(Sh, Ah, Eh, Ih, Sv, Iv) ∈ Ω | F ′ = 0}
is {E1} when R0 > 1. From the LaSalle’s Invariant Principle, we have the
unique endemic equilibrium E1 of system (2) is globally asymptotically stable
for R0 > 1. �

The epidemiological implication of Theorem 3.3 is that PWD would persist
in the population if R0 > 1.

5. Conclusions

In this paper, a deterministic model for the transmission dynamics of pine
wilt disease with asymptomatic carrier trees is developed and analyzed. The
basic reproduction number of the model is obtained. The global dynamics of
pine wilt disease with asymptomatic carrier trees in the host pine population is
completely determined by the associated basic reproduction number. IfR0 < 1,
the disease-free equilibrium is globally asymptotically stable, so the disease
always dies out. If R0 > 1, the disease-free equilibrium becomes unstable while
the endemic equilibrium emerges as the unique positive equilibrium and it is
shown to be globally asymptotically stable in the interior of the feasible region,
and once the disease appears, it eventually persists at the unique endemic
equilibrium level. Also, it is observed that a higher carriage increases the
basic reproduction number. That is, a suitable reduction in the carriage can
effectively bring R0 below 1 and hence alter the asymptotic dynamics of the
disease from globally stable endemicity to a disease-free steady state.
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