• 제목/요약/키워드: transmembrane protein

검색결과 287건 처리시간 0.03초

Development of a Reporter System for In Vivo Monitoring of γ-Secretase Activity in Drosophila

  • Hong, Young Gi;Roh, Seyun;Paik, Donggi;Jeong, Sangyun
    • Molecules and Cells
    • /
    • 제40권1호
    • /
    • pp.73-81
    • /
    • 2017
  • The ${\gamma}$-secretase complex represents an evolutionarily conserved family of transmembrane aspartyl proteases that cleave numerous type-I membrane proteins, including the ${\beta}$-amyloid precursor protein (APP) and the receptor Notch. All known rare mutations in APP and the ${\gamma}$-secretase catalytic component, presenilin, which lead to increased amyloid ${\beta}$-peptide production, are responsible for early-onset familial Alzheimer's disease. ${\beta}$-amyloid protein precursor-like (APPL) is the Drosophila ortholog of human APP. Here, we created Notch- and APPL-based Drosophila reporter systems for in vivo monitoring of ${\gamma}$-secretase activity. Ectopic expression of the Notch- and APPL-based chimeric reporters in wings results in vein truncation phenotypes. Reporter-mediated vein truncation phenotypes are enhanced by the Notch gain-of-function allele and suppressed by RNAi-mediated knockdown of presenilin. Furthermore, we find that apoptosis partly contributes to the vein truncation phenotypes of the APPL-based reporter, but not to the vein truncation phenotypes of the Notch-based reporter. Taken together, these results suggest that both in vivo reporter systems provide a powerful genetic tool to identify genes that modulate ${\gamma}$-secretase activity and/or APPL metabolism.

Regulation of BNIP3 in Normal and Cancer Cells

  • Lee, Hayyoung;Paik, Sang-Gi
    • Molecules and Cells
    • /
    • 제21권1호
    • /
    • pp.1-6
    • /
    • 2006
  • Bcl-2/adenovirus E1B 19 kDa-interacting protein 3 (BNIP3) is a mitochondrial pro-apoptotic protein that has a single Bcl-2 homology 3 (BH3) domain and a COOH-terminal transmembrane (TM) domain. Although it belongs to the Bcl-2 family and can heterodimerize with Bcl-2, its pro-apoptotic activity is distinct from those of other members of the Bcl-2 family. For example, cell death mediated by BNIP3 is independent of caspases and shows several characteristics of necrosis. Furthermore, the TM domain, but not the BH3 domain, is required for dimerization, mitochondrial targeting and pro-apoptotic activity. BNIP3 plays an important role in hypoxia-induced death of normal and malignant cells. Its expression is markedly increased in the hypoxic regions of some solid tumors and appears to be regulated by hypoxia-inducible factor (HIF), which binds to a site on the BNIP3 promoter. Silencing, followed by methylation, of the BNIP3 gene occurs in a significant proportion of cancer cases, especially in pancreatic cancers. BNIP3 also has a role in the death of cardiac myocytes in ischemia. Further studies of BNIP3 should provide insight into hypoxic cell death and may contribute to improved treatment of cancers and cardiovascular diseases.

Up-Regulation of RANK Expression via ERK1/2 by Insulin Contributes to the Enhancement of Osteoclast Differentiation

  • Oh, Ju Hee;Lee, Na Kyung
    • Molecules and Cells
    • /
    • 제40권5호
    • /
    • pp.371-377
    • /
    • 2017
  • Despite the importance of the receptor activator of nuclear factor (NF)-kappaB ligand (RANKL)-RANK signaling mechanisms on osteoclast differentiation, little has been studied on how RANK expression is regulated or what regulates its expression during osteoclastogenesis. We show here that insulin signaling increases RANK expression, thus enhancing osteoclast differentiation by RANKL. Insulin stimulation induced RANK gene expression in time- and dose-dependent manners and insulin receptor shRNA completely abolished RANK expression induced by insulin in bone marrow-derived monocyte/macrophage cells (BMMs). Moreover, the addition of insulin in the presence of RANKL promoted RANK expression. The ability of insulin to regulate RANK expression depends on extracellular signal-regulated kinase 1/2 (ERK1/2) since only PD98059, an ERK1/2 inhibitor, specifically inhibited its expression by insulin. However, the RANK expression by RANKL was blocked by all three mitogen-activated protein (MAP) kinases inhibitors. The activation of RANK increased differentiation of BMMs into tartrate-resistant acid phosphatase-positive ($TRAP^+$) osteoclasts as well as the expression of dendritic cell-specific transmembrane protein (DC-STAMP) and d2 isoform of vacuolar ($H^+$) ATPase (v-ATPase) Vo domain (Atp6v0d2), genes critical for osteoclastic cell-cell fusion. Collectively, these results suggest that insulin induces RANK expression via ERK1/2, which contributes to the enhancement of osteoclast differentiation.

New Perspectives in Pediatric Nonalcoholic Fatty Liver Disease: Epidemiology, Genetics, Diagnosis, and Natural History

  • Ko, Jae Sung
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • 제22권6호
    • /
    • pp.501-510
    • /
    • 2019
  • Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease in children. The global prevalence of pediatric NAFLD from general populations is 7.6%. In obese children, the prevalence is higher in Asia. NAFLD has a strong heritable component based on ethnic difference in the prevalence and clustering within families. Genetic polymorphisms of patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2, and glucokinase regulatory protein (GCKR) are associated with the risk of NAFLD in children. Variants of PNPLA3 and GCKR are more common in Asians. Alterations of the gut microbiome might contribute to the pathogenesis of NAFLD. High fructose intake increases the risk of NAFLD. Liver fibrosis is a poor prognostic factor for disease progression to cirrhosis. Magnetic resonance spectroscopy and magnetic resonance proton density fat fraction are more accurate for steatosis quantification than ultrasound. Noninvasive imaging methods to assess liver fibrosis, such as transient elastography, shear-wave elastography, and magnetic resonance elastography are useful in predicting advanced fibrosis, but they need further validation. Longitudinal follow-up studies into adulthood are needed to better understand the natural history of pediatric NAFLD.

Crystallization and X-ray crystallographic analysis of the PH-like domain of lipid transfer protein anchored at membrane contact sites from Saccharomyces cerevisiae

  • Tong, Junsen;Im, Young Jun
    • Biodesign
    • /
    • 제5권4호
    • /
    • pp.136-140
    • /
    • 2017
  • Lam6 is a member of sterol-specific ${\underline{l}ipid$ transfer proteins ${\underline{a}}nchored$ at ${\underline{m}ebrane$ contact sites (LAMs). Lam6 localizes to the ER-mitochondria contact sites by its PH-like domain and the C-terminal transmembrane helix. Here, we purified and crystallized the Lam6 PH-like domain from Saccharomyces cerevisiae. To aid crystallization of the Lam6 PH-like domain, T4 lysozyme was fused to the N-terminus of the Lam6 PH-like domain with a short dipeptide linker, GlySer. The fusion protein was crystallized under the condition of 0.1 M HEPES-HCl pH 7.0, 10% (w/v) PEG 8000, and 0.1 M $Na_3$ Citrate at 293K. X-ray diffraction data of the crystals were collected to $2.4{\AA}$ resolution using synchrotron radiation. The crystals belong to the orthorhombic space group $P2_12_12_1$ with unit cell parameters $a=59.5{\AA}$, $b=60.1{\AA}$, and $c=105.6{\AA}$. The asymmetric unit contains one T4L-Lam6 molecule with a solvent content of 58.7%. The initial attempt to solve the structure by molecular replacement using the T4 lysozyme structure was successful.

A novel frameshift mutation of PRRT2 in a family with infantile convulsions and choreoathetosis syndrome: c.640delinsCC (p.Ala214ProfsTer11)

  • Park, Bo Mi;Kim, Young Ok;Kim, Myeong-Kyu;Woo, Young Jong
    • Journal of Genetic Medicine
    • /
    • 제16권1호
    • /
    • pp.19-22
    • /
    • 2019
  • The infantile convulsions and choreoathetosis (ICCA) syndrome is defined when two overlapping clinical features of benign familial infantile epilepsy (BFIE) and paroxysmal kinesigenic dyskinesia (PKD) are present in an individual or a family. Since the gene encoding proline-rich transmembrane protein 2 (PRRT2) was first identified in Han Chinese families with PKD, mutations of PRRT2 have additionally been reported in patients with BFIE and ICCA. We attempted to identify the genetic etiology in an ICCA family where the proband, her elder sister, and a maternal male cousin had BFIE, and her mother had PKD. Whole-exome sequencing performed in the proband and her sister and mother identified a novel pathogenic mutation of PRRT2 (c.640delinsCC; p.Ala214ProfsTer11), which was verified by Sanger sequencing. This frameshift PRRT2 mutation located near the genetic hot spot of base 649_650 results in the premature termination of the protein, as do most previously reported mutations in BFIE, ICCA, and PKD.

Aluminium increase Iron uptake into Glial cells

  • Cheong, Jae-Hoon;Lim, Sung-Sup;Lee, Choong-Jae
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.293.3-294
    • /
    • 2002
  • In the brain, glial cells serve in the role to sequester metal from the neural microenvironment and therefore play an important role as a cellular deposition site. The central nervous system is highly vulnerable to oxidative stress, and free iron can stimulate oxidative stress by the Fenton reaction. Aluminum may upregulates the transferrin-independent iron uptake system and stimulate oxidative stress. Nramp2. also known as DMT 1. is a 12-transmembrane(TM) domain protein responsible for dietary iron uptake as well as metal ions such as iron. lead, mangamese. zinc. copper, and cobait. (omitted)

  • PDF

Paroxysmal kinesigenic dyskinesia in a patient with a PRRT2 mutation and centrotemporal spike discharges on electroencephalogram: case report of a 10-year-old girl

  • Seo, Sun Young;You, Su Jeong
    • Clinical and Experimental Pediatrics
    • /
    • 제59권sup1호
    • /
    • pp.157-160
    • /
    • 2016
  • Coexistence of paroxysmal kinesigenic dyskinesia (PKD) with benign infantile convulsion (BIC) and centrotemporal spikes (CTS) is very rare. A 10-year-old girl presented with a 3-year history of frequent attacks of staggering while laughing and of suddenly collapsing while walking. Interictal electroencephalogram (EEG) revealed bilateral CTS, but no changes in EEG were observed during movement. The patient's medical history showed afebrile seizures 6 months after birth, while the family history showed that the patient's mother and relatives on the mother's side had similar dyskinesia. Genetic testing demonstrated that the patient had a heterozygous mutation, c.649_650insC, in the PRRT2 gene. To our knowledge, this constitutes only the second report of a patient with PKD, BIC, CTS, and a PRRT2 mutation.

Induction of Inflammation Inhibits Taurine Transporter Activity in Murine Macrophage Cell Line

  • Kim, Jung-Hyun;Kim, Soyoung;Kim, Ha-Won;Kim, Byong-Kak
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1998년도 Proceedings of UNESCO-internetwork Cooperative Regional Seminar and Workshop on Bioassay Guided Isolation of Bioactive Substances from Natural Products and Microbial Products
    • /
    • pp.156-157
    • /
    • 1998
  • Taurine is synthesized in the body or uptaken from dietary and is distributed in the various organs. It differs from other amino acids by virtue of the fact that a sulfonic acid group replaces the carboxyl group of what would be ${\beta}$-alanine. In order to function within the cell it must be transported into the cells by taurine transporter that is spanned 12 transmembrane domains. The human taurine transporter has long cytoplasmic carboxy and amino termini that may function as regulatory attachment sites for other proteins. Six potential protein kinase C(PKC) phosphorylation sites have been reported in human taurine transporter.

  • PDF

Comparison of Exon-boundary Old and Young Domains during Metazoan Evolution

  • Lee, Byung-Wook
    • Genomics & Informatics
    • /
    • 제7권2호
    • /
    • pp.131-135
    • /
    • 2009
  • Domains are the building blocks of proteins. Exon shuffling is an important mechanism accounting for combination of a limited repertoire of protein domains in the evolution of multicellular species. A relative excess of domains encoded by symmetric exons in metazoan phyla has been presented as evidence of exon shuffling, and symmetric domains can be divided into old and new domains by determining the ages of the domains. In this report, we compare the spread, versatility, and subcellular localization of old and new domains by analyzing eight metazoan genomes and their respective annotated proteomes. We found that new domains have been expanding as multicellular organisms evolved, and this expansion was principally because of increases in class 1-1 domains amongst several classes of domain families. We also found that younger domains have been expanding in membranes and secreted proteins along with multi-cellular organism evolution. In contrast, old domains are located mainly in nuclear and cytoplasmic proteins. We conclude that the increasing mobility and versatility of new domains, in contrast to old domains, plays a significant role in metazoan evolution, facilitating the creation of secreted and transmembrane multidomain proteins unique to metazoa.