DOI QR코드

DOI QR Code

Comparison of Exon-boundary Old and Young Domains during Metazoan Evolution

  • Published : 2009.06.30

Abstract

Domains are the building blocks of proteins. Exon shuffling is an important mechanism accounting for combination of a limited repertoire of protein domains in the evolution of multicellular species. A relative excess of domains encoded by symmetric exons in metazoan phyla has been presented as evidence of exon shuffling, and symmetric domains can be divided into old and new domains by determining the ages of the domains. In this report, we compare the spread, versatility, and subcellular localization of old and new domains by analyzing eight metazoan genomes and their respective annotated proteomes. We found that new domains have been expanding as multicellular organisms evolved, and this expansion was principally because of increases in class 1-1 domains amongst several classes of domain families. We also found that younger domains have been expanding in membranes and secreted proteins along with multi-cellular organism evolution. In contrast, old domains are located mainly in nuclear and cytoplasmic proteins. We conclude that the increasing mobility and versatility of new domains, in contrast to old domains, plays a significant role in metazoan evolution, facilitating the creation of secreted and transmembrane multidomain proteins unique to metazoa.

Keywords

References

  1. Andreeva, A., Howorth, D., Brenner, S.E., Hubbard, T.J., Chothia, C., and Murzin, A.G. (2004). SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res. 32, D226-229 https://doi.org/10.1093/nar/gkh039
  2. Chothia, C., Gough, J., Vogel, C., and Teichmann, S.A. (2003). Evolution of the protein repertoire. Science 300, 1701-1703 https://doi.org/10.1126/science.1085371
  3. Eickbush, T. (1999). Exon shuffling in retrospect. Science 283, 1465-1467 https://doi.org/10.1126/science.283.5407.1465
  4. Finn, R.D., Mistry, J., Schuster-Bockler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T., Moxon, S., Marshall, M., Khanna, A., Durbin, R., Eddy, S.R., Sonnhammer, E.L., and Bateman, A. (2006). Pfam: clans, web tools and services. Nucleic Acids Res. 34, D247-251 https://doi.org/10.1093/nar/gkj149
  5. Han, J.H., Batey, S., Nickson, A.A., Teichmann, S.A., and Clarke, J. (2007). The folding and evolution of multidomain proteins. Nat. Rev. Mol. Cell Biol. 8, 319-330 https://doi.org/10.1038/nrm2144
  6. Hubbard, T.J., Aken, B.L., Beal, K., Ballester, B., Caccamo, M., Chen, Y., Clarke, L., Coates, G., Cunningham, F., Cutts, T., Down, T., Dyer, S.C., Fitzgerald, S., Fernandez-Banet, J., Graf, S., Haider, S., Hammond, M., Herrero, J., Holland, R., Howe, K., Howe, K., Johnson, N., Kahari, A., Keefe, D., Kokocinski, F., Kulesha, E., Lawson, D., Longden, I., Melsopp, C., Megy, K., Meidl, P., Ouverdin, B., Parker, A., Prlic, A., Rice, S., Rios, D., Schuster, M., Sealy, I., Severin, J., Slater, G., Smedley, D., Spudich, G., Trevanion, S., Vilella, A., Vogel, J., White, S., Wood, M., Cox, T., Curwen, V., Durbin, R., Fernandez-Suarez, X.M., Flicek, P., Kasprzyk, A., Proctor, G., Searle, S., Smith, J., Ureta-Vidal, A., and Birney, E. (2007). Ensembl 2007. Nucl. Acids Res. 35, D610-617 https://doi.org/10.1093/nar/gkl996
  7. Julenius, K., and Pedersen, A.G. (2006). Protein evolution is faster outside the cell. Mol. Biol. Evol. 23, 2039-2048 https://doi.org/10.1093/molbev/msl081
  8. Kaessmann, H., Z $\ddot{o}$llner, S., Nekrutenko, A., and Li, W.H. (2002), Signatures of domain shuffling in the human genome, Genome Res. 12, 1642-1650 https://doi.org/10.1101/gr.520702
  9. Kolkman, J.A., and Stemmer, W.P. (2001). Directed evolution of proteins by exon shuffling. Nat. Biotechnol. 19, 423-428 https://doi.org/10.1038/88084
  10. Lee, B., and Lee, D. (2008). DAhunter: a web-based server that identifies homologous proteins by comparing domain architecture. Nucleic Acids Res. 36, W60-64 https://doi.org/10.1093/nar/gkn172
  11. Liu, M., Wu, S., Walch, H., and Grigoriev, A. (2005). Exon-domain correlation and its corollaries. Bioinformatics 21, 3213-3216 https://doi.org/10.1093/bioinformatics/bti509
  12. Moran, J.V., DeBerardinis, R.J., and Kazazian, H.H., Jr. (1999). Exon shuffling by L1 retrotransposition. Science 283, 1530-1534 https://doi.org/10.1126/science.283.5407.1530
  13. Patthy, L. (1996). Exon shuffling and other ways of module exchange. Matrix Biol. 15, 301-310 https://doi.org/10.1016/S0945-053X(96)90131-6
  14. Patthy, L. (1999). Genome evolution and the evolution of exon-shuffling--a review. Gene 238, 103-114 https://doi.org/10.1016/S0378-1119(99)00228-0
  15. Vogel, C., Berzuini, C., Bashton, M., Gough, J., and Teichmann, S.A. (2004). Supra-domains: evolutionary units larger than single protein domains. J. Mol. Biol. 336, 809-823 https://doi.org/10.1016/j.jmb.2003.12.026
  16. Wu, C.H., Apweiler, R., Bairoch, A., Natale, D.A., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Mazumder, R., O'Donovan, C., Redaschi, N., and Suzek, B. (2006). The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucl. Acids Res. 34, D187-191 https://doi.org/10.1093/nar/gkj161
  17. Ye, Y., and Godzik, A. (2004). Comparative analysis of protein domain organization. Genome Res. 14, 343-353 https://doi.org/10.1101/gr.1610504