Browse > Article
http://dx.doi.org/10.5808/GI.2009.7.2.131

Comparison of Exon-boundary Old and Young Domains during Metazoan Evolution  

Lee, Byung-Wook (Korean BioInformation Center, KRIBB)
Abstract
Domains are the building blocks of proteins. Exon shuffling is an important mechanism accounting for combination of a limited repertoire of protein domains in the evolution of multicellular species. A relative excess of domains encoded by symmetric exons in metazoan phyla has been presented as evidence of exon shuffling, and symmetric domains can be divided into old and new domains by determining the ages of the domains. In this report, we compare the spread, versatility, and subcellular localization of old and new domains by analyzing eight metazoan genomes and their respective annotated proteomes. We found that new domains have been expanding as multicellular organisms evolved, and this expansion was principally because of increases in class 1-1 domains amongst several classes of domain families. We also found that younger domains have been expanding in membranes and secreted proteins along with multi-cellular organism evolution. In contrast, old domains are located mainly in nuclear and cytoplasmic proteins. We conclude that the increasing mobility and versatility of new domains, in contrast to old domains, plays a significant role in metazoan evolution, facilitating the creation of secreted and transmembrane multidomain proteins unique to metazoa.
Keywords
domain mobility and versatility; exon shuffling; old and young domains;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Eickbush, T. (1999). Exon shuffling in retrospect. Science 283, 1465-1467   DOI   PUBMED   ScienceOn
2 Finn, R.D., Mistry, J., Schuster-Bockler, B., Griffiths-Jones, S., Hollich, V., Lassmann, T., Moxon, S., Marshall, M., Khanna, A., Durbin, R., Eddy, S.R., Sonnhammer, E.L., and Bateman, A. (2006). Pfam: clans, web tools and services. Nucleic Acids Res. 34, D247-251   DOI   ScienceOn
3 Julenius, K., and Pedersen, A.G. (2006). Protein evolution is faster outside the cell. Mol. Biol. Evol. 23, 2039-2048   DOI   ScienceOn
4 Kaessmann, H., Z $\ddot{o}$llner, S., Nekrutenko, A., and Li, W.H. (2002), Signatures of domain shuffling in the human genome, Genome Res. 12, 1642-1650   DOI   ScienceOn
5 Moran, J.V., DeBerardinis, R.J., and Kazazian, H.H., Jr. (1999). Exon shuffling by L1 retrotransposition. Science 283, 1530-1534   DOI   PUBMED   ScienceOn
6 Vogel, C., Berzuini, C., Bashton, M., Gough, J., and Teichmann, S.A. (2004). Supra-domains: evolutionary units larger than single protein domains. J. Mol. Biol. 336, 809-823   DOI   ScienceOn
7 Ye, Y., and Godzik, A. (2004). Comparative analysis of protein domain organization. Genome Res. 14, 343-353   DOI   ScienceOn
8 Han, J.H., Batey, S., Nickson, A.A., Teichmann, S.A., and Clarke, J. (2007). The folding and evolution of multidomain proteins. Nat. Rev. Mol. Cell Biol. 8, 319-330   DOI   ScienceOn
9 Liu, M., Wu, S., Walch, H., and Grigoriev, A. (2005). Exon-domain correlation and its corollaries. Bioinformatics 21, 3213-3216   DOI   ScienceOn
10 Chothia, C., Gough, J., Vogel, C., and Teichmann, S.A. (2003). Evolution of the protein repertoire. Science 300, 1701-1703   DOI   PUBMED   ScienceOn
11 Patthy, L. (1999). Genome evolution and the evolution of exon-shuffling--a review. Gene 238, 103-114   DOI   ScienceOn
12 Andreeva, A., Howorth, D., Brenner, S.E., Hubbard, T.J., Chothia, C., and Murzin, A.G. (2004). SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res. 32, D226-229   DOI   PUBMED   ScienceOn
13 Kolkman, J.A., and Stemmer, W.P. (2001). Directed evolution of proteins by exon shuffling. Nat. Biotechnol. 19, 423-428   DOI   ScienceOn
14 Hubbard, T.J., Aken, B.L., Beal, K., Ballester, B., Caccamo, M., Chen, Y., Clarke, L., Coates, G., Cunningham, F., Cutts, T., Down, T., Dyer, S.C., Fitzgerald, S., Fernandez-Banet, J., Graf, S., Haider, S., Hammond, M., Herrero, J., Holland, R., Howe, K., Howe, K., Johnson, N., Kahari, A., Keefe, D., Kokocinski, F., Kulesha, E., Lawson, D., Longden, I., Melsopp, C., Megy, K., Meidl, P., Ouverdin, B., Parker, A., Prlic, A., Rice, S., Rios, D., Schuster, M., Sealy, I., Severin, J., Slater, G., Smedley, D., Spudich, G., Trevanion, S., Vilella, A., Vogel, J., White, S., Wood, M., Cox, T., Curwen, V., Durbin, R., Fernandez-Suarez, X.M., Flicek, P., Kasprzyk, A., Proctor, G., Searle, S., Smith, J., Ureta-Vidal, A., and Birney, E. (2007). Ensembl 2007. Nucl. Acids Res. 35, D610-617   DOI   ScienceOn
15 Patthy, L. (1996). Exon shuffling and other ways of module exchange. Matrix Biol. 15, 301-310   DOI   ScienceOn
16 Lee, B., and Lee, D. (2008). DAhunter: a web-based server that identifies homologous proteins by comparing domain architecture. Nucleic Acids Res. 36, W60-64   DOI   ScienceOn
17 Wu, C.H., Apweiler, R., Bairoch, A., Natale, D.A., Barker, W.C., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Mazumder, R., O'Donovan, C., Redaschi, N., and Suzek, B. (2006). The Universal Protein Resource (UniProt): an expanding universe of protein information. Nucl. Acids Res. 34, D187-191   DOI   ScienceOn