Browse > Article
http://dx.doi.org/10.14348/molcells.2017.2294

Development of a Reporter System for In Vivo Monitoring of γ-Secretase Activity in Drosophila  

Hong, Young Gi (Department of Molecular Biology, Chonbuk National University)
Roh, Seyun (Department of Molecular Biology, Chonbuk National University)
Paik, Donggi (Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School)
Jeong, Sangyun (Department of Molecular Biology, Chonbuk National University)
Abstract
The ${\gamma}$-secretase complex represents an evolutionarily conserved family of transmembrane aspartyl proteases that cleave numerous type-I membrane proteins, including the ${\beta}$-amyloid precursor protein (APP) and the receptor Notch. All known rare mutations in APP and the ${\gamma}$-secretase catalytic component, presenilin, which lead to increased amyloid ${\beta}$-peptide production, are responsible for early-onset familial Alzheimer's disease. ${\beta}$-amyloid protein precursor-like (APPL) is the Drosophila ortholog of human APP. Here, we created Notch- and APPL-based Drosophila reporter systems for in vivo monitoring of ${\gamma}$-secretase activity. Ectopic expression of the Notch- and APPL-based chimeric reporters in wings results in vein truncation phenotypes. Reporter-mediated vein truncation phenotypes are enhanced by the Notch gain-of-function allele and suppressed by RNAi-mediated knockdown of presenilin. Furthermore, we find that apoptosis partly contributes to the vein truncation phenotypes of the APPL-based reporter, but not to the vein truncation phenotypes of the Notch-based reporter. Taken together, these results suggest that both in vivo reporter systems provide a powerful genetic tool to identify genes that modulate ${\gamma}$-secretase activity and/or APPL metabolism.
Keywords
${\gamma}$-secretase; Alzheimer's disease; APPL; Notch; presenilin;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wang, X., Wang, Z., Chen, Y., Huang, X., Hu, Y., Zhang, R., Ho, M.S., and Xue, L. (2014). FoxO mediates APP-induced AICD-dependent cell death. Cell Death Dis. 5, e1233.   DOI
2 Goedert, M. (2015). NEURODEGENERATION. Alzheimer's and Parkinson's diseases: The prion concept in relation to assembled $A{\beta}$, tau, and $\alpha$-synuclein. Science 349, 1255555.   DOI
3 Greeve, I., Kretzschmar, D., Tschape, J.A., Beyn, A., Brellinger, C., Schweizer, M., Nitsch, R.M., and Reifegerste, R. (2004). Age-dependent neurodegeneration and Alzheimer-amyloid plaque formation in transgenic Drosophila. J. Neurosci. 24, 3899-3906.   DOI
4 Gunawardena, S., and Goldstein, L.S. (2001). Disruption of axonal transport and neuronal viability by amyloid precursor protein mutations in Drosophila. Neuron 32, 389-401.   DOI
5 Han, K., and Manley, J.L. (1993). Transcriptional repression by the Drosophila even-skipped protein: definition of a minimal repression domain. Genes Dev. 7, 491-503.   DOI
6 Hay, B.A., Wolff, T., and Rubin, G.M. (1994). Expression of baculovirus P35 prevents cell death in Drosophila. Development 120, 2121-2129.
7 He, G., Luo, W., Li, P., Remmers, C., Netzer, W.J., Hendrick, J., Bettayeb, K., Flajolet, M., Gorelick, F., Wennogle, L.P., et al. (2010). Gamma-secretase activating protein is a therapeutic target for Alzheimer's disease. Nature 467, 95-98.   DOI
8 Herreman, A., Serneels, L., Annaert, W., Collen, D., Schoonjans, L., and De Strooper, B. (2000). Total inactivation of $\gamma$-secretase activity in presenilin-deficient embryonic stem cells. Nat. Cell Biol. 2, 461-462.   DOI
9 Jeong, S., Juhaszova, K., and Kolodkin, A.L. (2012). The control of semaphorin-1a-mediated reverse signaling by opposing pebble and RhoGAPp190 functions in Drosophila. Neuron 76, 721-734.   DOI
10 Johnson, R.L., Grenier, J.K., and Scott, M.P. (1995). patched overexpression alters wing disc size and pattern: transcriptional and post-transcriptional effects on hedgehog targets. Development 121, 4161-4170.
11 Ju, B.G., Jeong, S., Bae, E., Hyun, S., Carroll, S.B., Yim, J., and Kim, J. (2000). Fringe forms a complex with Notch. Nature 405, 191-195.   DOI
12 Kim, J., Irvine, K.D., and Carroll, S.B. (1995). Cell recognition, signal induction, and symmetrical gene activation at the dorsal-ventral boundary of the developing Drosophila wing. Cell 82, 795-802.   DOI
13 Louvi, A., and Artavanis-Tsakonas, S. (2006). Notch signalling in vertebrate neural development. Nat. Rev. Neurosci. 7, 93-102.   DOI
14 Brand, A.H., and Perrimon, N. (1993). Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415.
15 Brown, M.S., Ye, J., Rawson, R.B., and Goldstein, J.L. (2000). Regulated intramembrane proteolysis: a control mechanism conserved from bacteria to humans. Cell 100, 391-398.   DOI
16 Cao, X., and Sudhof, T.C. (2001). A transcriptionally active complex of APP with Fe65 and histone acetyltransferase Tip60. Science 293, 115-120.   DOI
17 de Celis, J.F., and Garcia-Bellido, A. (1994b). Modifications of the notch function by Abruptex mutations in Drosophila melanogaster. Genetics 136, 183-194.
18 Carmine-Simmen, K., Proctor, T., Tschape, J., Poeck, B., Triphan, T., Strauss, R., and Kretzschmar, D. (2009). Neurotoxic effects induced by the Drosophila amyloid-$\beta$ peptide suggest a conserved toxic function. Neurobiol Dis. 33, 274-281.   DOI
19 Chen, F., Hasegawa, H., Schmitt-Ulms, G., Kawarai, T., Bohm, C., Katayama, T., Gu, Y., Sanjo, N., Glista, M., Rogaeva, E., et al. (2006). TMP21 is a presenilin complex component that modulates $\gamma$-secretase but not $\varepsilon$-secretase activity. Nature 440, 1208-1212.   DOI
20 de Celis, J.F., and Garcia-Bellido, A. (1994a). Roles of the Notch gene in Drosophila wing morphogenesis. Mech. Dev. 46, 109-122.   DOI
21 de Celis, J.F. (1998). Positioning and differentiation of veins in the Drosophila wing. Int. J. Dev. Biol. 42, 335-343.
22 De Strooper, B. (2003). Aph-1, Pen-2, and Nicastrin with Presenilin generate an active $\gamma$-Secretase complex. Neuron 38, 9-12.   DOI
23 De Strooper, B., Vassar, R., and Golde, T. (2010). The secretases: enzymes with therapeutic potential in Alzheimer disease. Nat. Rev. Neurol. 6, 99-107.
24 Zhou, S., Zhou, H., Walian, P.J., and Jap, B.K. (2005). CD147 is a regulatory subunit of the $\gamma$-secretase complex in Alzheimer's disease amyloid $\beta$-peptide production. Proc. Natl. Acad. Sci. USA 102, 7499-7504.   DOI
25 Weiss, J.B., Suyama, K.L., Lee, H.H., and Scott, M.P. (2001). Jelly belly: a Drosophila LDL receptor repeat-containing signal required for mesoderm migration and differentiation. Cell 107, 387-398.   DOI
26 Wharton, K.A., Johansen, K.M., Xu, T., and Artavanis-Tsakonas, S. (1985). Nucleotide sequence from the neurogenic locus notch implies a gene product that shares homology with proteins containing EGF-like repeats. Cell 43, 567-581.   DOI
27 Zhang, Z., Nadeau, P., Song, W., Donoviel, D., Yuan, M., Bernstein, A., and Yankner, B.A. (2000). Presenilins are required for $\gamma$-secretase cleavage of $\beta$-APP and transmembrane cleavage of Notch-1. Nat. Cell Biol. 2, 463-465.   DOI
28 Lu, B., and Vogel, H. (2009). Drosophila models of neurodegenerative diseases. Annu. Rev. Pathol. 4, 315-342.   DOI
29 Luo, L., Tully, T., and White, K. (1992). Human amyloid precursor protein ameliorates behavioral deficit of flies deleted for appl gene. Neuron 9, 595-605.   DOI
30 Martin-Morris, L.E., and White, K. (1990). The Drosophila transcript encoded by the $\beta$-amyloid protein precursor-like gene is restricted to the nervous system. Development 110, 185-195.
31 Bai, X.C., Yan, C., Yang, G., Lu, P., Ma, D., Sun, L., Zhou, R., Scheres, S.H., and Shi, Y. (2015). An atomic structure of human $\gamma$-secretase. Nature 525, 212-217.   DOI
32 Esler, W.P., and Wolfe, M.S. (2001). A portrait of Alzheimer secretases--new features and familiar faces. Science 293, 1449-1454.   DOI
33 Fernandez-Funez, P., de Mena, L., and Rincon-Limas, D.E. (2015). Modeling the complex pathology of Alzheimer's disease in Drosophila. Exp. Neurol. 274, 58-71.   DOI
34 Fortini, M.E. (2009). Notch signaling: the core pathway and its posttranslational regulation. Dev. Cell 16, 633-647.   DOI
35 Bailey, A.M., and Posakony, J.W. (1995). Suppressor of hairless directly activates transcription of enhancer of split complex genes in response to Notch receptor activity. Genes Dev. 9, 2609-2622.   DOI
36 Bertet, C., Li, X., Erclik, T., Cavey, M., Wells, B., and Desplan, C. (2014). Temporal patterning of neuroblasts controls Notch-mediated cell survival through regulation of Hid or Reaper. Cell 158, 1173-1186.   DOI
37 Selkoe, D.J. (1998). The cell biology of $\beta$-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol. 8, 447-453.   DOI
38 McCarthy, J.V., Twomey, C., and Wujek, P. (2009). Presenilin-dependent regulated intramembrane proteolysis and $\gamma$-secretase activity. Cell. Mol. Life Sci. 66, 1534-1555.   DOI
39 Nicolas, M., and Hassan, B.A. (2014). Amyloid precursor protein and neural development. Development 141, 2543-2548.   DOI
40 Sadowski, I., Ma, J., Triezenberg, S., and Ptashne, M. (1988). GAL4-VP16 is an unusually potent transcriptional activator. Nature 335, 563-564.   DOI
41 Selkoe, D.J., and Wolfe, M.S. (2007). Presenilin: running with scissors in the membrane. Cell 131, 215-221.   DOI
42 Stempfle, D., Kanwar, R., Loewer, A., Fortini, M.E., and Merdes, G. (2010). In vivo reconstitution of $\gamma$-secretase in Drosophila results in substrate specificity. Mol. Cell. Biol. 30, 3165-3175.   DOI
43 Tanzi, R.E. (2012). The genetics of Alzheimer disease. Cold Spring Harb. Perspect. Med. 2, a006296.
44 Teranishi, Y., Inoue, M., Yamamoto, N.G., Kihara, T., Wiehager, B., Ishikawa, T., Winblad, B., Schedin-Weiss, S., Frykman, S., et al. (2015). Proton myo-inositol cotransporter is a novel $\gamma$-secretase associated protein that regulates $A{\beta}$ production without affecting Notch cleavage. FEBS J. 282, 3438-3451.   DOI
45 Wakabayashi, T., Craessaerts, K., Bammens, L., Bentahir, M., Borgions, F., Herdewijn, P., Staes, A., Timmerman, E., Vandekerckhove, J., Rubinstein, E., et al. (2009). Analysis of the $\gamma$-secretase interactome and validation of its association with tetraspanin-enriched microdomains. Nat. Cell Biol. 11, 1340-1346.   DOI
46 Brachmann, C.B., and Cagan, R.L. (2003). Patterning the fly eye: the role of apoptosis. Trends Genet. 19, 91-96.   DOI
47 Bier, E. (2005). Drosophila, the golden bug, emerges as a tool for human genetics. Nat. Rev. Genet. 6, 9-23.