• Title/Summary/Keyword: transmembrane

Search Result 588, Processing Time 0.025 seconds

Characteristics of the Concentration Process of Lactobacillus Cell Using a Ceramic Membrane (세라믹막을 이용한 Lactobacillus cell의 농축 공정의 특성)

  • Lee Yong Taek;Song Min-Ho
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.192-200
    • /
    • 2004
  • It is an anaerobic germ that Lactobacillus cell concentrated using ceramic membrane has high stability and long lifetime as compared with polymeric membrane. The effects of operating pressure, temperature, crossflow velocity on cell harvesting have been studied. Also the variation of flux and transmembrane pressure (TMP) with increasing concentration ratio and the change of TMP at constant concentration ratio (volumetric concentration factor: VCF) regarding the optimization have been examined. It showed that the permeate flux increased gradually with the increasing of transmembrane pressure, crossflow velocity, and volumetric concentration factor. The higher initial flux was due to the reduction of viscosity at elevated temperature. However, as operating time progressed, the effect of temperature was negligible since the effect of viscosity became minor. As a result, that operate in a constant concentration ratio, decreased degree could know that become slowly although the flux decreases according as operating time progressed. The flux is a very stable in the condition of constant VCF range. The yield of Latobaciilus (PS 406) which was cultivated at $37^{\circ}C$ was concentrated about 4.9{\times}10^9$ after operation.

The Transmembrane Adaptor Protein LIME Is Essential for Chemokine-Mediated Migration of Effector T Cells to Inflammatiory Sites

  • Park, Inyoung;Son, Myongsun;Ahn, Eunseon;Kim, Young-Woong;Kong, Young-Yun;Yun, Yungdae
    • Molecules and Cells
    • /
    • v.43 no.11
    • /
    • pp.921-934
    • /
    • 2020
  • Lck-interacting transmembrane adaptor 1 (LIME) has been previously identified as a raft-associated transmembrane protein expressed predominantly in T and B lymphocytes. Although LIME is shown to transduce the immunoreceptor signaling and immunological synapse formation via its tyrosine phosphorylation by Lck, a Src-family kinase, the in vivo function of LIME has remained elusive in the previous studies. Here we report that LIME is preferentially expressed in effector T cells and mediates chemokine-mediated T cell migration. Interestingly, in LIME-/- mice, while T cell receptor stimulation-dependent proliferation, differentiation to effector T cells, cytotoxic T lymphocyte (CTL) function and regulatory T lymphocyte (Treg) function were normal, only T cell-mediated inflammatory response was significantly defective. The reduced inflammation was accompanied by the impaired infiltration of leukocytes and T cells to the inflammatory sites of LIME-/- mice. More specifically, the absence of LIME in effector T cells resulted in the reduced migration and defective morphological polarization in response to inflammatory chemokines such as CCL5 and CXCL10. Consistently, LIME-/- effector T cells were found to be defective in chemokine-mediated activation of Rac1 and Rap1, and dysregulated phosphorylation of Pyk2 and Cas. Taken together, the present findings show that LIME is a critical regulator of inflammatory chemokine-mediated signaling and the subsequent migration of effector T cells to inflammatory sites.

Expression and characterization of transmembrane and coiled-coil domain family 3

  • Sohn, Wern-Joo;Kim, Jae-Young;Kim, Dongbum;Park, Jeong-A;Lee, Younghee;Kwon, Hyung-Joo
    • BMB Reports
    • /
    • v.49 no.11
    • /
    • pp.629-634
    • /
    • 2016
  • Transmembrane and coiled-coil domain family 3 (TMCC3) has been reported to be expressed in the human brain; however, its function is still unknown. Here, we found that expression of TMCC3 is higher in human whole brain, testis and spinal cord compared to other human tissues. TMCC3 was expressed in mouse developing hind brain, lung, kidney and somites, with strongest expression in the mesenchyme of developing tongue. By expression of recombinant TMCC3 and its deletion mutants, we found that TMCC3 proteins self-assemble to oligomerize. Immunostaining and confocal microscopy data revealed that TMCC3 proteins are localized in endoplasmic reticulum through transmembrane domains. Based on immunoprecipitation and mass spectroscopy data, TMCC3 proteins associate with TMCC3 and 14-3-3 proteins. This supports the idea that TMCC3 proteins form oligomers and that 14-3-3 may be involved in the function of TMCC3. Taken together, these results may be useful for better understanding of uncharacterized function of TMCC3.

Expression of Taurine Transporter in Cell Lines and Murine Organs (세포주와 마우스 조직에서 타우린수송체의 발현분석)

  • 김하원;안희창;안혜숙;현진원;이은방
    • Biomolecules & Therapeutics
    • /
    • v.10 no.2
    • /
    • pp.78-84
    • /
    • 2002
  • Taurine (2-ethaneaminosulfonic acid, $^+{NH}_3{CH_2}{CH_2}{SO_3^{-}}$) is endogenous amino acid with functions as modulator of osmoregulation, antioxidation, detoxification, transmembrane calcium transport, and a free radical scavenger in mammalian tissues. Taurine transporter(TAUT) contains 12 transmembrane helices, which are typical of the $Na^+$- and $Cl^-$-dependent transporter gene family, and has been cloned recently from several species and tissues. To analyze the expression of TAUT mRNA, one step RT-PCR was performed from human and mouse cultured cell lines and from various mouse tissues. The primers were designed to encode highly conserved amino acid sequences at the second transmembrane domain and at the fourth and fifth intracellular domains. RT-PCR analysis showed both of the human intestine HT-29 and mouse macrophage RAW264.7 cell lines expressed mRNA of TAUT. To define the expression patterns of the TAUT mRNA in the murine organs, RT-PCR was performed to detect cDNA representing TAUT mRNA from seven different mouse tissues. The TAUT was detected in all of the mouse tissues analyzed such as heart, lung, thymus, kidney, liver, spleen and brain. A large amount of transcript was fecund from heart, liver, spleen, kidney, and brain, while lung contained a very small amount of transcript.

Structural Change in Transmembrane Region of Syndecan-4 by Mutation

  • Choi, Sung-Sub;Kim, Ji-Sun;Jeong, Ji-Ho;Kim, Yongae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.20 no.4
    • /
    • pp.129-137
    • /
    • 2016
  • Transmembrane(TM) proteins are closely related to transport, channel formation, signaling, cell to cell interaction, so they are the crucial target of modern medicinal drugs. In order to study the structure and function of these TM proteins, it is important to prepare reasonable amounts of proteins. However, their preparation is seriously difficult and time-consuming due to insufficient yields and low solubility of TM proteins. We tried to produce large amounts of Syndecan-4 containing TM domain(SDC4-TM) that is related to the wound healing and tumor. Also, mutated SDC4-TM was studied to investigate structural change by modification of dimerization motif. We performed the structure determination by the Polarity Index at Slanted Angle (PISA) wheel pattern analysis based on $^{15}N-^1H$ 2D SAMPI-4 solid-state NMR of SDC4-TM and computational modeling using Discovery Studio 2016.

Optimization of the experimental conditions for structural studies of the second transmembrane domain from human wild-type & mutant melanocortin-4 receptor

  • Gang, Ga-Ae;Choi, Sung-Sub;Park, Tae-Joon;Kim, Yong-Ae
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.14 no.2
    • /
    • pp.88-104
    • /
    • 2010
  • Human melanocortin-4 receptor (hMC4R) has a critical role in part of energy homeostasis, and their heterozygous mutations related in genetic cause of severe human obesity. In order to study the structure and function of these membrane proteins, it is important to prepare the samples. However, the preparation of transmembrane peptide is seriously difficult and time-consuming. Overexpression and purification of membrane proteins was reported to be difficult due to their innate insoluble and toxic properties. Among the many difficulties, the most important is the difficulty in obtaining sufficient quantities of purified protein. Recently, we succeed to produce large amounts of the second transmembrane domain from the wild-type hMC4R (wt-TM2) and D90N mutant hMC4R (m-TM2) and proposed the structural difference of them in membrane-like environments. In this paper, we demonstrate the optimization procedures to express and purify wt-TM2 or m-TM2 peptides, and solution NMR studies in different detergents to get high-resolution spectra were also described.

Structural Effects of the GXXXG Motif on the Oligomer Formation of Transmembrane Domain of Syndecan-4

  • Song, Jooyoung;Kim, Ji-Sun;Choi, Sung-Sub;Kim, Yongae
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.12
    • /
    • pp.3577-3585
    • /
    • 2013
  • Syndecan-4 (heparan sulfate proteoglycan), biologically important in cell-to-cell interactions and tumor suppression, was studied through mutation of the GXXXG motif of its transmembrane domain (Syd4-TM), a motif which governs dimerization. The expression and purification of the mutant (mSyd4-TM) were optimized here to assess the function of the GXXXG motif in the dimerization of Syd4-TM. mSyd4-TM was obtained in M9 minimal media and its oligomerization was identified by SDS PAGE, Circular Dichroism (CD) spectroscopy, mass spectrometry and NMR spectroscopy. The mutant, unlike Syd4-TM, did not form dimers and was observed as monomers. The GXXXG motif of Syd-4TM was shown to be an important structural determinant of its dimerization.

Applicability evaluation of microbubble for membrane fouling reduction in wastewater reuse membrane process (하수재이용 막여과 공정에서 막오염 저감을 위한 마이크로버블 적용성 평가)

  • Lee, Chang-Ha;Kim, Geon-Youb;Kim, Hyung-Soo;Kim, Ji-Hoon;Lee, Kyung-Il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.2
    • /
    • pp.169-175
    • /
    • 2017
  • This study applied microbubbles to reduce membrane fouling in wastewater reuse membrane processes, evaluated and compared the transmembrane pressure with or without the application of microbubbles and the cleaning efficiency with the application of aeration and microbubbles. In addition, this study analyzed foulants removed from the membrane surface. Changes in the transmembrane pressure of membranes with the presence or absence of microbubbles were observed. As a result, transmembrane pressure (TMP) increasing rate decreased twofold when applying microbubbles to realize stable operations. This study compared and evaluated cleaning efficiency applying aeration and microbubbles. As a result, the cleaning efficiency was 5% higher on average when applying microbubbles. In turbidity and total organic carbon (TOC), foulants were discharged when applying microbubbles twice as much as applying aeration. It is thought that particulate foulants precipitated on the membrane surface were more likely to desorb because the adhesion between the membrane surface and particle was weakened by microbubbles. Therefore, it is considered possible to effectively control membrane fouling because of the increase in cleaning efficiency when applying microbubbles to wastewater reuse membrane processes.

Comprehensive Analysis of Non-Synonymous Natural Variants of G Protein-Coupled Receptors

  • Kim, Hee Ryung;Duc, Nguyen Minh;Chung, Ka Young
    • Biomolecules & Therapeutics
    • /
    • v.26 no.2
    • /
    • pp.101-108
    • /
    • 2018
  • G protein-coupled receptors (GPCRs) are the largest superfamily of transmembrane receptors and have vital signaling functions in various organs. Because of their critical roles in physiology and pathology, GPCRs are the most commonly used therapeutic target. It has been suggested that GPCRs undergo massive genetic variations such as genetic polymorphisms and DNA insertions or deletions. Among these genetic variations, non-synonymous natural variations change the amino acid sequence and could thus alter GPCR functions such as expression, localization, signaling, and ligand binding, which may be involved in disease development and altered responses to GPCR-targeting drugs. Despite the clinical importance of GPCRs, studies on the genotype-phenotype relationship of GPCR natural variants have been limited to a few GPCRs such as b-adrenergic receptors and opioid receptors. Comprehensive understanding of non-synonymous natural variations within GPCRs would help to predict the unknown genotype-phenotype relationship and yet-to-be-discovered natural variants. Here, we analyzed the non-synonymous natural variants of all non-olfactory GPCRs available from a public database, UniProt. The results suggest that non-synonymous natural variations occur extensively within the GPCR superfamily especially in the N-terminus and transmembrane domains. Within the transmembrane domains, natural variations observed more frequently in the conserved residues, which leads to disruption of the receptor function. Our analysis also suggests that only few non-synonymous natural variations have been studied in efforts to link the variations with functional consequences.

Effect on the Arginine Transport of Mutant MCAT1, Mouse Cationic Aminoacid Transporter (MCAT1의 돌연변이체가 Arginine 통과 능력에 미치는 영향)

  • Kim, Jung-Woo
    • The Journal of Natural Sciences
    • /
    • v.8 no.2
    • /
    • pp.35-41
    • /
    • 1996
  • To find the substrate interacting site of the MCAT1, charged amino acid residues in the transmembrane domain were changed to opposite charged amino acids and studied the arginine uptake, gp70 binding, efflux and protein expression using the Xenopus oocyte expression method. Among the five mutants of MCAT1, the D403K showed the most interesting characteristics, which had normal gp70 binding but low arginine uptake function, that means the normal expression on the membrane but decreased transport function. All mutants except K211E showed decreased arginine efflux, and kinetic study showed decreased Vmax. Together, Clu(403) residue of MCAT1 may show the possible substrate interacting site in the transmembrane domain of MCAT1.

  • PDF