DOI QR코드

DOI QR Code

Structural Change in Transmembrane Region of Syndecan-4 by Mutation

  • Choi, Sung-Sub (Department of Chemistry, Hankuk University of Foreign Studies) ;
  • Kim, Ji-Sun (Department of Chemistry, Hankuk University of Foreign Studies) ;
  • Jeong, Ji-Ho (Department of Chemistry, Hankuk University of Foreign Studies) ;
  • Kim, Yongae (Department of Chemistry, Hankuk University of Foreign Studies)
  • Received : 2016.11.16
  • Accepted : 2016.12.10
  • Published : 2016.12.20

Abstract

Transmembrane(TM) proteins are closely related to transport, channel formation, signaling, cell to cell interaction, so they are the crucial target of modern medicinal drugs. In order to study the structure and function of these TM proteins, it is important to prepare reasonable amounts of proteins. However, their preparation is seriously difficult and time-consuming due to insufficient yields and low solubility of TM proteins. We tried to produce large amounts of Syndecan-4 containing TM domain(SDC4-TM) that is related to the wound healing and tumor. Also, mutated SDC4-TM was studied to investigate structural change by modification of dimerization motif. We performed the structure determination by the Polarity Index at Slanted Angle (PISA) wheel pattern analysis based on $^{15}N-^1H$ 2D SAMPI-4 solid-state NMR of SDC4-TM and computational modeling using Discovery Studio 2016.

Keywords

References

  1. S. E. Stringer, and J. T. Gallagher, Int. J. Biochem. Cell Biol. 29, 709 (1997) https://doi.org/10.1016/S1357-2725(96)00170-7
  2. G. David, B. Schueren, P. Marynen, J. J. Cassiman, and H. Berghe, J. Cell. Biol. 118, 961 (1992) https://doi.org/10.1083/jcb.118.4.961
  3. K. Elenius, and M. Kalkanen, J. Cell Sci. 107, 2975 (1994)
  4. D. M. Beauvais, and A. C. Rapraege, Reprod. Biol. Endocrin. 2, 3 (2004) https://doi.org/10.1186/1477-7827-2-3
  5. M. Gulyas, and A. Hjerper, J. Pathol. 199, 479 (2003) https://doi.org/10.1002/path.1312
  6. T. R. Roskams, G. David, B. Damme, V. Desmet, and J. Pathol. 185, 290 (1998) https://doi.org/10.1002/(SICI)1096-9896(199807)185:3<290::AID-PATH91>3.0.CO;2-I
  7. F. Echtermeyer, M. Streit, S. Wilcox-Adelman, S. Saoncella, F. Denhez, M. Detmar, and P. F. Goetinck, J. Clin. Invest. 107, R9 (2001) https://doi.org/10.1172/JCI10559
  8. A. Shimazu, M. A. H. Bachchu, M. Morishita, M. Noshiro, Y. Kato, and Y. Iwamoto, J. Dent. Res. 78, 1791 (1999) https://doi.org/10.1177/00220345990780120501
  9. S. Yung, A. Woods, T. M. Chan, M. Davies, J. D. Williams, and J. R. Couchman, FASEB J. 15, 1631 (2001) https://doi.org/10.1096/fj.00-0794fje
  10. A.Woods, J. R. Couchman, and Curr. Opin. Cell Biol. 13, 578 (2001) https://doi.org/10.1016/S0955-0674(00)00254-4
  11. Y. Zhang, M. Pasparakis, G. Kollias, and M. Simons, J. Biol. Chem. 274, 14786 (1999) https://doi.org/10.1074/jbc.274.21.14786
  12. F. Baba, K. Swartz, R. Buren, J. Eickhoff, Y. Zhang, W. Wolberg, and A. Friedl, Breast Cancer Res. Tr. 98, 91 (2006) https://doi.org/10.1007/s10549-005-9135-2
  13. M. E. Lendorf, T. Manon-Jensen, P. Kronqvist, H. A. B. Multhaupt, and J. R. Couchman, J. Histochem. Cytochem. 59, 615 (2011) https://doi.org/10.1369/0022155411405057
  14. W. Huang, R. Chiquet-Ehrismann, J. V. Moyano, A. Garcia-Pardo, and G. Orend, Cancer Res. 161, 8586 (2001)
  15. R. Chipquet-Ehrismann, P. Kalla, C. A. Pearson, K. Beck, and M. Chiquet, Cell 53, 383 (1998)
  16. S. Choi, E. Lee, S. Kwon, H. Park, J. Y. Yi, S. Kim, I. O. Han, Y. Yun, and E. S. Oh, J. Biol. Chem. 280, 42573 (2005) https://doi.org/10.1074/jbc.M509238200
  17. H. Udo, N. Kent, and P. Norbert, Nature Rev. Mol. Cell Biol. 6, 530 (2005) https://doi.org/10.1038/nrm1681
  18. J. S. Waugh, Proc. Natl. Acad. Sci. USA 5, 1394 (1976)
  19. A. A. Nevzorove, and S. J. Opella, J. Magn. Reson. 164, 182 (2003) https://doi.org/10.1016/S1090-7807(03)00240-4
  20. F. M. Marassi, and S. J. Opella, J. Magn. Reson. 144 150 (2000) https://doi.org/10.1006/jmre.2000.2035
  21. I. C. Dew, and K. R. MacKenzie, Proc. Natl. Acad. Sci.U.S.A. 104 20782 (2007) https://doi.org/10.1073/pnas.0708909105
  22. T. Park, M. Lee, J. Kim, and Y. Kim, Process Biochem. 46 1166 (2011) https://doi.org/10.1016/j.procbio.2011.02.006
  23. J. Song, J. Kim, S. S. Choi, and Y. Kim, Bull. Korean Chem. Soc. 34 3577 (2013) https://doi.org/10.5012/bkcs.2013.34.12.3577
  24. M. H. Levitt, D. Suter, and R. R. Ernst, J. Chem. Phys. 84, 4243 (1986) https://doi.org/10.1063/1.450046
  25. A. A. Nevzorove, and S. J. Opella, J. Magn. Reson. 164, 182 (2003) https://doi.org/10.1016/S1090-7807(03)00240-4
  26. F. M. Marassi, and S. J. Opella, J. Magn. Reson. 144, 150 (2000) https://doi.org/10.1006/jmre.2000.2035
  27. J. Wang, J. Denney, C. Tian, S. Kim, Y. Mo, F. Kovacs, Z. Song, K. Nishimura, Z. Gan, R. Fu, J. R. Quine, and T. A. Cross, J. Magn. Reson. 144, 162 (2000) https://doi.org/10.1006/jmre.2000.2037
  28. R. Chen, Z. A. Weng, Proteins 51, 397 (2003) https://doi.org/10.1002/prot.10334
  29. S. S. Choi, J. H. Jeong, J. S. Kim, and Y. A. Kim, J. Kor. Magn. Reson. Soc. 18, 58 (2014) https://doi.org/10.6564/JKMRS.2014.18.2.058
  30. R. Best, X. Zhu, J. Shim, P. Lopes, J. Mittal, M. Feig, and A. D. Mackerell, J. Chem. Theory & Comput. 8, 3257 (2012) https://doi.org/10.1021/ct300400x
  31. S. H. Park, A. A. Angelis, A. A. Nevzorove, C. H. Wu, and S. J. Opella, Biophys. J. 91, 3032 (2006) https://doi.org/10.1529/biophysj.106.087106
  32. D. E. Warschawski, A. A. Arnold, M. Beaugrand, A. Gravel, E. Chartrand, and I. Marcotte, Biochim. Biophys. Acta 1808, 1957 (2011) https://doi.org/10.1016/j.bbamem.2011.03.016
  33. J. H. Brown, Protein Sci. 15, 1 (2006) https://doi.org/10.1110/ps.051658406