• Title/Summary/Keyword: transition to turbulence

Search Result 121, Processing Time 0.029 seconds

Combined Radiation-Natural Convection Heat Transfer in a Rectangular Enclosure (직사각형 밀폐공간내에서의 복사 및 자연대류 열전달)

  • 김기훈;이택식;이준식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.331-344
    • /
    • 1987
  • A numerical analysis has been conducted on the interaction of the thermal radiation and natural convection in a rectangular enclosure filled with a gray fluid. P-1 approximation is adopted for the radiative transfer and its application limit is examined. Considered are the Stark number effect, the optical thickness effect and the wall emissivity effect on the flow and heat transfer characteristics. As the Stark number increase or the optical thickness decreases, the boundary layer thickness and the flow velocity increase. Transition to turbulence is retarded with the increase of the radiation effect. When the optical thickness is one, the radiation effect is negligible for the Stark numbers larger than 10.

Conjugate Heat Transfer Analysis for High Pressure Cooled Turbine Vane in Aircraft Gas Turbine (항공기용 가스터빈의 고압 냉각터빈 노즐에 대한 복합열전달 해석)

  • Kim, Jinuk;Bak, Jeonggyu;Kang, Young-Seok;Cho, Jinsoo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.2
    • /
    • pp.60-66
    • /
    • 2015
  • Conjugate heat transfer analysis was performed to investigate the flow and cooling performance of the high pressure turbine nozzle of gas turbine engine. The CHT code was verified by comparison between CFD results and experimental results of C3X vane. The combination of k-${\omega}$ based SST turbulence model and transition model was used to solve the flow and thermal field of the fluid zone and the material property of CMSX-4 was applied to the solid zone. The turbine nozzle has two internal cooling channels and each channel has a complex cooling configurations, such as the film cooling, jet impingement, pedestal and rib turbulator. The parabolic temperature profile was given to the inlet condition of the nozzle to simulate the combustor exit condition. The flow characteristics were analyzed by comparing with uncooled nozzle vane. The Mach number around the vane increased due to the increase of coolant mass flow flowed in the main flow passage. The maximum cooling effectiveness (91 %) at the vane surface is located in the middle of pressure side which is effected by the film cooling and the rib turbulrator. The region of the minimum cooling effectiveness (44.8 %) was positioned at the leading edge. And the results show that the TBC layer increases the average cooling effectiveness up to 18 %.

Height Dependence of Plasma Properties in a Solar Limb Active Region Observed by Hinode/EIS

  • Lee, Kyoung-Sun;Imada, S.;Moon, Y.J.;Lee, Jin-Yi
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.110.2-110.2
    • /
    • 2012
  • We investigate a cool loop and a dark lane over a limb active region on 2007 March 14 by the Hinode/EUV Imaging Spectrometer (EIS). The cool loop is clearly seen in the EIS spectral lines formed at the transition region temperature (log T = 5.8). The dark lane is characterized by an elongated faint structure in coronal spectral lines (log T = 5.8 - 6.1) and rooted on a bright point. We examine their electron densities, Doppler velocities, and non-thermal velocities as a function of distance from the limb using the spectral lines formed at different temperatures (log T = 5.4 - 6.4). The electron densities of the cool loop and the dark lane are derived from the density sensitive line pairs of Mg VII, Fe XII, and Fe XIV spectra. Under the hydrostatic equilibrium and isothermal assumption, we determine their temperatures from the density scale height. Comparing the scale height temperatures to the peak formation temperatures of the spectral lines, we note that the scale height temperature of the cool loop is consistent with a peak formation temperature of the Mg VII (log T = 5.8) and the scale height temperature of the dark lane is close to a peak formation temperature of the Fe XII and Fe XIII (log T = 6.1 - 6.2). It is interesting to note that the structures of the cool loop and the dark lane are most visible in these temperature lines. While the non-thermal velocity in the cool loop slightly decreases (less than 7 km $s^{-1}$) along the loop, that in the dark lane sharply falls off with height. The variation of non-thermal velocity with height in the cool loop and the dark lane is contrast to that in off-limb polar coronal holes which are considered as source of the fast solar wind. Such a decrease in the non-thermal velocity may be explained by wave damping near the solar surface or turbulence due to magnetic reconnection near the bright point.

  • PDF

Numerical Simulations of Discontinuous Density Currents using k-ε Model (k-ε 모형을 이용한 불연속 유입 밀도류의 수치모의)

  • Lee, Hea Eun;Choi, Sung Uk
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.3B
    • /
    • pp.231-237
    • /
    • 2009
  • This study presents a numerical model to simulate density currents developing two dimensionally. The ${\kappa}-{\varepsilon}$ model is used for the turbulence closure. Elliptic flow equations are solved by the finite volume method. In order to investigate the applicability of the numerical model, discontinuous density currents are simulated numerically. The vortices due to the instability at the interface are simulated, showing a good agreement with the experimental visualizations in the literature. It is also investigated that the transition from slumping phase to inertial phase occurs when a bore generated at the end wall overtakes the front. However, the propagation of the density current is retarded compared with the experimental results. Two-dimensional modeling seems to have an effect on underestimating the front velocity of the density current.

NATURAL CIRCULATION ANALYSIS CONSIDERING VARIABLE FLUID PROPERTIES WITH THE CUPID CODE (CUPID 코드의 유체 물성치 변화를 고려한 자연대류 해석)

  • Lee, S.J.;Park, I.K.;Yoon, H.Y.;Kim, J.
    • Journal of computational fluids engineering
    • /
    • v.20 no.4
    • /
    • pp.14-20
    • /
    • 2015
  • Without electirc power to cool down the hot reactor core, passive systems utilizing natural circulation are becoming a big specialty of recent neculear systems after the severe accident in Fukusima. When we consider the natural circulation in a pool, thermal mixing phenomena may start from single phase circulation and can continue to two phase condition. Since the CUPID code, which has been developed for two-phase flow analysis, can deal with the phase transition phenomena, the CUPID would be pertinent to natural convection problems in single- and two-phase conditions. Thus, the CUPID should be validated against single- and two-phase natural circulation phenomena. For the first step of the validation process, this study is focused on the validation of single-phase natural circulation. Moreover, the CUPID code solves the fluid properties by the relationship to pressure and temperature from the steam table considering non-condensable gas effects, so that the effects from variable properties are included. Simple square thermal cavity problems are tested for laminar and turbulent conditions against numerical and experimental data. Throughout the investigation, it is found that the variable properties can affect the flow field in laminar condition, but the effect becomes weak in turbulence condition, and the CUPID code implementing steam table is capable of analyzing single phase natural circualtion phenomena.

Specific Impulse Gain for KSLV-II with Combination of Dual Bell Nozzle and Expansion-Deflection Nozzle (듀얼 벨 노즐과 E-D 노즐을 결합한 한국형발사체의 비추력 증가)

  • Moon, Taeseok;Huh, Hwanil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.16-27
    • /
    • 2018
  • A basic numerical analysis was performed to confirm the possibility of combining a dual bell nozzle and an Expansion-Deflection(E-D) nozzle. The dual bell nozzle was designed based on the first-stage nozzle of the Korean Space Launch Vehicle that is being developed, and the E-D nozzle concept was applied to the dual bell nozzle. The inlet condition was analyzed by applying eight types of frozen flow analysis, and k-${\omega}$ SST was selected as the turbulence model. The number of optimal grids was obtained as 240,000 through the grid sensitivity analysis. As a result, it was confirmed that the transition altitude increased owing to over-expansion when the E-D nozzle concept was applied to the dual bell nozzle, and the specific impulse gain was obtained at high altitudes compared with the KSLV-II first-stage engine.

THE FRACTAL DIMENSION OF THE 𝜌 OPHIUCUS MOLECULAR CLOUD COMPLEX

  • Lee, Yongung;Li, Di;Kim, Y.S.;Jung, J.H.;Kang, H.W.;Lee, C.H.;Yim, I.S.;Kim, H.G.
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.6
    • /
    • pp.255-259
    • /
    • 2016
  • We estimate the fractal dimension of the ${\rho}$ Ophiuchus Molecular Cloud Complex, associated with star forming regions. We selected a cube (${\upsilon}$, l, b) database, obtained with J = 1-0 transition lines of $^{12}CO$ and $^{13}CO$ at a resolution of 22" using a multibeam receiver system on the 14-m telescope of the Five College Radio Astronomy Observatory. Using a code developed within IRAF, we identified slice-clouds with two threshold temperatures to estimate the fractal dimension. With threshold temperatures of 2.25 K ($3{\sigma}$) and 3.75 K ($5{\sigma}$), the fractal dimension of the target cloud is estimated to be D = 1.52-1.54, where $P{\propto}A^{D/2}$, which is larger than previous results. We suggest that the sampling rate (spatial resolution) of observed data must be an important parameter when estimating the fractal dimension, and that narrower or wider dispersion around an arbitrary fit line and the intercepts at NP = 100 should be checked whether they relate to firms noise level or characteristic structure of the target cloud. This issue could be investigated by analysing several high resolution databases with different quality (low or moderate sensitivity).

Response of Ecosystem Carbon and Water Vapor Exchanges in Evolving Nocturnal Low-Level Jets

  • Hong, Jin-Kyu;Mathieu, Nathalie;Strachan, Ian B.;Pattey, Elizabeth;Leclerc, Monique Y.
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.3
    • /
    • pp.222-233
    • /
    • 2012
  • The nocturnal low-level jet makes a significant impact on carbon and water exchanges and turbulent mixing processes in the atmospheric boundary layer. This study reports a case study of nocturnal surface fluxes such as $CO_2$ and water vapor in the surface layer observed at a flat and homogeneous site in the presence of low-level jets (LLJs). In particular, it documents the temporal evolution of the overlying jets and the coincident response of surface fluxes. The present study highlights several factors linking the evolution of low-level jets to surface fluxes: 1) wavelet analysis shows that turbulent fluxes have similar time scales with temporal scale of LLJ evolution; 2) turbulent mixing is enhanced during the transition period of low-level jets; and 3) $CO_2$, water vapor and heat show dissimilarity from momentum during the period. We also found that LLJ activity is related not only to turbulent motions but also to the divergence of mean flow. An examination of scalar profiles and turbulence data reveal that LLJs transport $CO_2$ and water vapor by advection in the stable boundary layer, suggesting that surface fluxes obtained from the micrometeorological method such as nocturnal boundary layer budget technique should carefully interpreted in the presence of LLJs.

CFD-EFD Mutual Validation Using a CFD Solver Based on Unstructured Meshes Developed at KAIST (KAIST 비정렬격자 기반 CFD 해석자를 이용한 CFD-EFD 상호 비교 검증)

  • Jung, Seongmun;Han, Jaeseong;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.259-267
    • /
    • 2017
  • Flow fields around a KARI-11-180 airfoil, SDM and transonic body are numerically simulated by using an unstructured meshes based compressible flow solver developed at KAIST. RANS equations are solved to analyse the flow fields and Roe's FDS method is adopted to evaluate convective fluxes. Turbulence effect of the flow fields is modeled by a SA model, SST model and ${\gamma}-{\widetilde{Re}}_{{\theta}t}$ model. It is found that smaller drag coefficients are predicted for the KARI-11-180 airfoil when a transition phenomenon is considered and small deviations exist between CFD and EFD results. For the SDM, flow separation is observed at a leading edge and calculated aerodynamic properties show similar tendencies to experimental results. A shock wave on main wings of the transonic body is successfully captured by the present flow solver at a Mach number 0.9. Estimated pressure profiles by means of the present CFD method also agree well with those of wind tunnel results.

Flow of Non-Newtonian Fluids in an Annulus with Rotation of the Inner Cylinder (안쪽축이 회전하는 환형관내 비뉴튼유체 유동 연구)

  • 김영주;우남섭;황영규
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.277-283
    • /
    • 2002
  • This experimental study concerns the characteristics of a helical flow in a concentric annulus with a diameter ratio of 0.52, whose outer cylinder is stationary and inner one is rotating. The pressure losses and skin friction coefficients have been measured for the fully developed flow of Non-Newtonian fluid, aqueous solution of sodium carbomethyl cellulose (CMC) and bentonite with inner cylinder rotational speed of 0~400 prm. Also, the visualization of helical flows has been performed to observe the unstable waves. The results of present study reveal the relation of the Reynolds number Re and Rossby number Ro with respect to the skin friction coefficients. In somehow, they show the existence of flow instability mechanism. The pressure losses increase as the rotational speed increases, but the gradient of pressure losses decreases as the Reynolds number increases in the regime of transition and turbulence. And the increase of flow disturbance by Taylor vortex in a concentric annulus with rotating inner cylinder results in the decrease of the critical Reynolds number with the increase of skin friction coefficient.