• 제목/요약/키워드: transition metal

검색결과 1,200건 처리시간 0.032초

STUDY OF MAGNETISM IN THE LAYERED TRANSITION METAL COMPOUND ${(C_{n}H_{2n+1}NH_{3})}_{2}CuCl_{4}\;(n=10,\;14)$

  • Lee, C.H.;Lee, K.W.;Lee, Cheol-Eui;Kang, J.K.
    • 한국자기학회지
    • /
    • 제5권5호
    • /
    • pp.358-361
    • /
    • 1995
  • We have investigated the quasi-two-dimensional magnetism for the layered transition metal compound (C/sub n/H/sub 2n+1/NH/sub 3/)/sub 2/CuCl/sub 4/ (n=10, 14) in the high temperature regions by means of EPR (Electron Paramagnetic Resonance) and SQUID measurements. As a result, the magnetic transitions were reflected in the EPR linewidths and the magnetic suceptibilities in a sensitive manner. Fluctuations of the magnetic susceptibility and a similar variation of the .DELTA. g =(g/sub .parallel. -/g/sub .perp. /)g/sub .parallel. / value were also observed around the structural phase transition temperatures.

  • PDF

Low-energy band structure very sensitive to the interlayer distance in Bernal-stacked tetralayer graphene

  • Lee, Kyu Won;Lee, Cheol Eui
    • Current Applied Physics
    • /
    • 제18권11호
    • /
    • pp.1393-1398
    • /
    • 2018
  • We have investigated Bernal-stacked tetralayer graphene as a function of interlayer distance and perpendicular electric field by using density functional theory calculations. The low-energy band structure was found to be very sensitive to the interlayer distance, undergoing a metal-insulator transition. It can be attributed to the nearest-layer coupling that is more sensitive to the interlayer distance than are the next-nearest-layer couplings. Under a perpendicular electric field above a critical field, six electric-field-induced Dirac cones with mass gaps predicted in tight-binding models were confirmed, however, our density functional theory calculations demonstrate a phase transition to a quantum valley Hall insulator, contrasting to the tight-binding model prediction of an ordinary insulator.

Review on Electronic Correlations and the Metal-Insulator Transition in SrRuO3

  • Pang, Subeen
    • Applied Microscopy
    • /
    • 제47권3호
    • /
    • pp.187-202
    • /
    • 2017
  • The classical electron band theory is a powerful tool to describe the electronic structures of solids. However, the band theory and corresponding density functional theory become inappropriate if a system comprises localized electrons in a scenario wherein strong electron correlations cannot be neglected. $SrRuO_3$ is one such system, and the partially localized d-band electrons exhibit some interesting behaviors such as enhanced effective mass, spectral incoherency, and oppression of ferromagnetism and itinerancy. In particular, a Metal-Insulator transition occurs when the thickness of $SrRuO_3$ approaches approximately four unit cells. In the computational studies, irrespective of the inclusion of on-site Hubbard repulsion and Hund's coupling parameters, correctly depicting the correlation effects is difficult. Because the oxygen atoms and the symmetry of octahedra are known to play important roles in the system, scrutinizing both the electronic band structure and the lattice system of $SrRuO_3$ is required to find the origin of the correlated behaviors. Transmission electron microscopy is a promising solution to this problem because of its integrated functionalities, which include atomic-resolution imaging and electron energy loss spectroscopy.

Atomic Resolution Scanning Transmission Electron Microscopy of Two-Dimensional Layered Transition Metal Dichalcogenides

  • Lu, Ning;Wang, Jinguo;Oviedo, uan Pablo;Lian, Guoda;Kim, Moon Jea
    • Applied Microscopy
    • /
    • 제45권4호
    • /
    • pp.225-229
    • /
    • 2015
  • Transition metal dichalcogenides (TMDs) are a class of two-dimensional (2D) materials that have attracted growing interest because of their promising applications. The properties of TMDs strongly depend on the crystalline structure and the number and stacking sequence of layers in their crystals and thin films. Though electrical, mechanical, and magnetic studies of 2D materials are being conducted, there is an evident lack of direct atom-by-atom visualization, limiting insight on these highly exciting material systems. Herein, we present our recent studies on the characterization of 2D layered materials by means of aberration corrected scanning transmission electron microscopy (STEM), in particular via high angle annular dark field (HAADF) imaging. We have identified the atomic arrangements and defects in 2H stacked TMDs, 1T stacked TMDs, distorted 1T stacked TMDs, and vertically integrated heterojunctions of 2D TMDs crystals.

아크릴 섬유의 아미도옥심화에 관한 연구(I) -아미도옥심 반응과 천이금속의 흡착능- (Studies on Amidoximated Acrylic Fiber(I) -Amidoximation and Adsorption Capacity to Transition Metals -)

  • Chin, Young Gil;Kim, Kyu Beom
    • 한국염색가공학회지
    • /
    • 제8권6호
    • /
    • pp.40-46
    • /
    • 1996
  • In order to investigate a practical application of fibrous absorbents to transition metals such as copper, nickel, cobalt, chrome, and iron, amidoximated fiber as a particular class of solid chelate agents were prepared from acrylic fibers treatment with hydroxylamine. The adsorption mechanisms of metal ions onto amidoximated acrylic fibers and their complexes were studied. Amidoximation of acrylic fiber with hydroxylamine is found to be first-order reaction, followed by the disappearance of infrared adsorption peaks due to nitrile groups of acrylic fibers. The uptake of metal ions onto amidoximated acrylic fiber is increased with temperature raising and the adsorption is also depended on pH of the soiutions. About 70% of metal ions can be recovered from aqueous solutions of Ni(II), Co(II), Cr(III), and Fe(II) on the concentration below 5x 10$^$^{-4}$ in the range of pH 2.1~10.0. Transition metals are adsorbed to form complex with amidoxime group by the ligand sites such as C=N, NH, NO, NHOH.OH.

  • PDF

바나듐 산화물의 금속-절연체 전이현상 기반 센서 연구 (Metal-Insulator Transition of Vanadium Dioxide Based Sensors)

  • 백정민
    • 센서학회지
    • /
    • 제23권5호
    • /
    • pp.314-319
    • /
    • 2014
  • Here, we review the various methods for the preparation of vanadium dioxide ($VO_2$) films and nanowires, and their potential applications to the sensors such as gas sensor, strain sensor, and temperature sensor. $VO_2$ is an interesting material on account of its easily accessible and sharp Mott metal-insulator transition (MIT) at ${\sim}68^{\circ}C$ in the bulk. The MIT is also triggered by the electric field, stress, magnetic field etc. This paper involves exceptionally sensitive hydrogen sensors based on the catalytic process between hydrogen molecules and Pd nanoparticles on the $VO_2$ surface, and fast responsive sensors based on the self-heating effects which leads to the phase changes of the $VO_2$. These features will be seen in this paper and can enable strategies for the integration of a $VO_2$ material in advanced and complex functional units such as logic gates, memory, FETs for micro/nano-systems as well as the sensors.

분자 동역학 계산을 통한 결정질 실리콘 태양전지 기판에 콜드 스프레이 전극 형성 시 발생되는 비정질 구리상에 대한 용융 온도 변화 연구 (Melting Point of Amorphous Copper Phase on Crystalline Silicon Solar Cells During Cold Spray using Molecular Dynamics Calculations)

  • 김수민;강병준;정수정;강윤묵;이해석;김동환
    • Current Photovoltaic Research
    • /
    • 제3권2호
    • /
    • pp.61-64
    • /
    • 2015
  • In solar industry, numerous researchers reported about cold spray method among various electrode formation technic, but there are no known a bonding mechanism of metal powder. In this study, a cross-section of copper electrode formed by cold spray method was observed and heterogeneous phase between silicon substrate and copper electrode was analyzed using morphology observation technic. SEM and TEM analysis were performed to analyze a crystallinity and distribution shape of heterogeneous copper phase. Molecular dynamics simulation was performed to calculate glass transition temperature of copper metal. In the result, amorphous copper phase was observed near interface between silicon substrate and metal electrode. The results of the molecular dynamics simulation show that an amorphous copper phase could be formed at a temperature below the melting point of copper because cold spraying resulted in a lower glass transition temperature.

Ex-situ Reductive Dechlorination of Carbon Tetrachloride by Iron Sulfide in Batch Reactor

  • Choi, Kyung-Hoon;Lee, Woo-Jin
    • Environmental Engineering Research
    • /
    • 제13권4호
    • /
    • pp.177-183
    • /
    • 2008
  • Ex-situ reductive dechlorination of carbon tetrachloride (CT) by iron sulfide in a batch reactor was characterized in this study. Reactor scaled-up by 3.5 L was used to investigate the effect of reductant concentration on removal efficiency and process optimization for ex-situ degradation. The experiment was conducted by using both liquid-phase and gas-phase volume at pH 8.5 in anaerobic condition. For 1 mM of initial CT concentration, the removal of the target compound was 98.9% at 6.0 g/L iron sulfide. Process optimization for ex-situ treatment was performed by checking the effect of transition metal and mixing time on synthesizing iron sulfide solution, and by determining of the regeneration time. The effect of Co(II) as transition metal was shown that the reaction rate was slightly improved but the improvement was not that outstanding. The result of determination on the regeneration time indicated that regenerating reductant capacity after $1^{st}$ treatment of target compound was needed. Due to the high removal rates of CT, ex-situ reductive dechlorination in batch reactor can be used for basic treatment for the chlorinated compounds.

기계적 합금화법을 이용한 전이금속 도핑에 따른 TiO2분말의 광촉매 특성 (Photocatalytic Behaviors of Transition Metal Ions Doped TiO2 Synthesized by Mechanical Alloying)

  • 우승희;김흥회;김선재;이창규
    • 한국분말재료학회지
    • /
    • 제12권4호
    • /
    • pp.266-272
    • /
    • 2005
  • Transition metal ions($Ni^{2+}$, $Cr^{3+}$ and $V^{5+}$) doped $TiO_2$ nanostructured powders were synthesized by mechanical alloying(MA) to shift the adsorption threshold into the visible light region. The synthesized powders were characterized by XRD, SEM, TEM and BET for structural analysis, UV-Vis and photoluminescence spectrum for the optical study. Also, photocatalytic abilities were evaluated by decomposition of 4-chlorophenol(4CP) under ultraviolet and visible light irradiations. Optical studies showed that the absorption wavelength of transition metal ions doped $TiO_2$ powders moved to visible light range, which was believed to be induced by the energy level change due to the doping. Among the prepared $TiO_2$ powders, $NiO^{2+}$ doped $TiO_2$ powders, showed excellent photooxidative ability in 4CP decomposition.

알루미늄 合金 異材熔接部의 變形率測定 (The strain measurement on the aluminum alloy welded transition joint)

  • 옹장우;전제춘;오상진
    • 대한기계학회논문집
    • /
    • 제10권5호
    • /
    • pp.625-634
    • /
    • 1986
  • 본 연구에서는 알루미늄 합금인 알루미늄 2014와 6061의 이재를 V형 맞대기 이음을 한 후 정적인장하중을 가하여 모아레법에 광탄성 피복법을 조합한 방법에 의 해 변형율을 실시간(real time)에서 측정하고 유한요소법으로 해석한 결과와 비교검 토하였다.