• Title/Summary/Keyword: transition band

Search Result 480, Processing Time 0.027 seconds

Crystal growth and optical absorption of $Mg_{0.16}Zn_{0.84}Te:Co $ single crystal ($Mg_{0.16}Zn_{0.84}Te:Co $단결정 성장과 광흡수 특성)

  • 정상조
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.4
    • /
    • pp.548-554
    • /
    • 1997
  • The single crystal of $Mg_{0.16}Zn_{0.84}$Te:Co(Co:0.01 mole%) was grown by vertical Bridgman method. The crystal structure of $Mg_{0.16}Zn$_{0.84}$Te:Co and optical absorption properties of this compound were studied. The grown single crystal has a cubic structure and a lattice constant a=6.1422 $\AA$ were determined by X-ray diffraction. As a result of the optical absorption spectra of $Mg_{0.16}Zn_{0.84}$Te:Co, the intracenter transitions due to $Co^{2+}$ ions were detected for $A-band:^4A_2(^4F){\to}^4T_2(^4F),\; B-band:^4A_2(^4F){\to}^4T_1(^4F), C- band:^4A_2(^4F){\to}^4T_1(^4P)$.The charge transfer transition near the absorption edge was observed in the wavelength range of 550 to 770 nm. According to the crystal field theory, the crystal field parameter(Dq) and the Racah parameter(B) were determined.

  • PDF

Design of a Multiple Band-notched Wideband Circular Slot Antenna with Arc-shaped Slots

  • Yeo, Junho;Park, Cheol-Young
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.18 no.1
    • /
    • pp.11-17
    • /
    • 2013
  • A design method to achieve multiple band-rejection characteristics in a wideband circular slot antenna is presented. First, a wideband circular slot antenna fed by a coplanar waveguide is designed to operate in the frequency range between 2.3 and 11GHz, which covers WLAN, WiBro, WiMAX, and UWB frequency bands. Next, resonant frequency variations of rejection bands are examined with respect to different slot locations and lengths when slots are inserted on the ground conductor and the circular patch of the antenna. When arc-shaped slots are placed close to the circular transition from a feeding part, multiple notch bands are obtained. In this case, a half of the guided wavelength of the first notch band corresponds to the slot length and other notch bands are integer-multiple of the first band. Single notch band can be obtained when the slot is located off the transition part. Based on this study, a wideband circular slot antenna with five band-rejection frequency bands at 2.45, 3.5, 4.9, 7.35, and 9.8GHz is designed and fabricated. The first arc-shaped slots are located in the ground conductor close to the circular transition from a feeding part to generate notch bands at 2.45, 4.9, 7.35, and 9.8GHz, while the second slot for 3.73 GHz is placed on top side in the circular patch. The proposed design method is validated by good agreement between the simulated and measured results.

Design of FIR Halfband Filters using Generalized Lagrange Polynomial (일반화된 라그랑지 다항식을 사용하는 FIR 하프밴드 필터 설계)

  • Bong, Jeongsik;Jeon, Joonhyeon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.188-198
    • /
    • 2013
  • Maximally flat (MAXFLAT) half-band filters usually have wider transition band than other filters. This is due to the fact that the maximum possible number of zeros at $z={\pm}1$ is imposed, which leaves no degree of freedom, and thus no independent parameters for direct control of the frequency response. This paper describes a novel method for the design of FIR halfband filters with an explicit control of the transition-band width. The proposed method is based on a generalized Lagrange halfband polynomial (g-LHBP) with coefficients parametizing a 0-th coefficient $h_0$, and allows the frequency response of this filter type to be controllable by adjusting $h_0$. Then, $h_0$ is modeled as a steepness parameter of the transition band and this is accomplished through theoretically analyzing a polynomial recurrence relation of the g-LHBP. This method also provides explicit formulas for direct computation of design parameters related to choosing a desired filter characteristic (by trade-off between the transition-band sharpness and passband & stopband flatness). The examples are shown to provide a complete and accurate solution for the design of such filters with relatively sharper transition-band steepness than MAXFLAT half-band filters.

Selenide Glass Optical Fiber Doped with $Pr^{3+}$ for U-Band Optical Amplifier

  • Chung, Woon-Jin;Seo, Hong-Seok;Park, Bong-Je;Ahn, Joon-Tae;Choi, Yong-Gyu
    • ETRI Journal
    • /
    • v.27 no.4
    • /
    • pp.411-417
    • /
    • 2005
  • $Pr^{3+}-doped$ selenide glass optical fiber, which guarantees single-mode propagation of above at least 1310 nm, has been successfully fabricated using a Ge-Ga-Sb-Se glass system. Thermal properties such as glass transition temperature and viscosity of the glasses have been analyzed to find optimum conditions for fiber drawing. Attenuation loss incorporating the effects of an electronic band gap transition, Rayleigh scattering, and multiphonon absorption has also been theoretically estimated for the Ge-Ga-Sb-Se fiber. A conventional double crucible technique has been applied to fabricate the selenide fiber. The background loss of the fiber was estimated to be approximately 0.64 dB/m at 1650 nm, which can be considered fairly good. When excited at approximately 1470 nm, $Pr^{3+}-doped$ selenide fiber resulted in amplified spontaneous emission and saturation behavior with increasing pump power in a U-band wavelength range of 1625 to 1675 nm.

  • PDF

Luminescence of CaS:Bi

  • 김창홍;편종홍;최 한;김성진
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.3
    • /
    • pp.337-340
    • /
    • 1999
  • Luminescence of bismuth activated CaS, CaS:Bi, prepared in sodium polysulfide is studied. Excitation spectrum of CaS:Bi shows a band at 350 nm due to the recombination process between holes in Na+Ca2+ and electrons in conduction bands, in addition to bands at 260 nm from band gap of CaS, and at 320 nm (1S0→1P1) and at 420 nm (1S0→3P1) from electronic energy transitions of Bi. Emission band at 450 nm is from 3P1→1S0 transition of Bi3+, bands at 500 nm and 580 nm correspond to recombinations of electron donors (Bi3+Ca2+ and VS2-) with acceptors (VCa2+ and Na+Ca2+). Emission band of 3P1→1S0 transition is shifted to longer wavelength from CaS:Bi to BaS:Bi, due to the increase of the Stokes shift by the decrease of the crystal field parameter from CaS:Bi to BaS:Bi.

Spectroscopic Studies of Eu(III) Complexes with Iminodiacetic and Methyliminodiacetic Acids

  • 김동철;윤수경;김윤두;강준길;배준현;김종구
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.1
    • /
    • pp.83-86
    • /
    • 1998
  • The luminescence spectra of Eu(Ⅲ) complexes have been measured as a function of molar metal-to-ligand ratio and pH. The ligands used in this study are tridentate iminodiacetate (IDA) and methyliminodiacetate (MIDA). The 620 nm emission band, attributed to the $^5D_0{\to}^7F_2$ transition, is monitored to investigate the optimum condition for $EuL_3^{3-}$ complex formation in aqueous state. In addition, the sensitivity of the 465 nm absorption band, attributed to the $^7F_0{\to}^5D_2$ transition, to the ligand environment has been also investigated.

Technical Research on Waveguide-to-Microstrip Transition Using an Inline Structure for Millimeter-Wave Seekers (Inline 구조를 이용한 밀리미터파 탐색기용 도파관-마이크로스트립 전이구조 기술 연구)

  • Park, Sang Woo;Lee, Dong Jae;Song, Sung Chan;Lee, Man Gyu;Kim, Yong Hwan;Kim, Jeong Ryul;Hong, Dong Hee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.54-59
    • /
    • 2019
  • In this paper, we report on the waveguide-to-microstrip transition with an inline structure for the millimeter band. The waveguide-to-microstrip transition comprises a probe, an inductive line, a ${\lambda}/4$ impedance transformer, and a 50-ohm microstrip line. For the transition design, we optimized the characteristic impedances and lengths of the component parts. The fabricated transition exhibits an insertion loss of 2.1 dB and an input/output return loss of below 13 dB at a millimeter band frequency of 94 GHz.

Design and fabrication of a 12-way radial combiner with a miniaturized dual waveguide to coaxial transition structure (소형화가 가능한 이중 도파관-동축 변환 구조를 갖는 12-way 방사형 결합기 설계 및 제작)

  • Su Hyun Lee;Byung Joo Kang;Hyo Sang Moon;Nam Woo Choi;Hoon Ki Yang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.6
    • /
    • pp.145-155
    • /
    • 2023
  • A radial combiner with high efficiency characteristics in the X-band was designed and manufactured using a waveguide and matching structure. In particular, in order to manufacture it in a small size, a dual waveguide to coaxial transition structure was applied that allows two ports to be matched to one waveguide. Applying this structure makes it possible to manufacture smaller than typical coaxial to waveguide radial combiner. As a result of measurement in the X-band band of 9.2~10GHz, the return loss was less than -18.408dB and the output insertion loss was less than 0.206dB, and the output combining efficiency was obtained as high as 95.37% or more. It is expected that it can be used in the combining part for high output transmitters in the millimeter wave band in the future. In particular, the range of use is expected to increase by reducing the size and weight.

Design of W-band Microstrip-to-Waveguide Transition Structure Using Fin-line Taper (Fin-line taper를 이용한 W-대역 마이크로스트립-도파관 전이구조 설계)

  • Kim, Young-Gon;Yong, Myung-Hun;Lee, Hyeonkeon;Joo, Ji-Han;An, Se-Hwan;Seo, Mihui
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.3
    • /
    • pp.37-42
    • /
    • 2022
  • A high-performance wideband transition from microstrip to waveguide is proposed. This transition is designed by consideration of gradual field transformation and optimal impedance matching between microstrip line and fin-line. Clear design guidelines of proposed transition using fin-line taper with offset DSPSL (double-sided parallel stripline) are provided to determine the transition shape and the transition length. The fabricated transition exhibits less than 0.67 dB insertion loss per transition for frequencies from 85 to 108 GHz, and less than 1 dB insertion loss from 83 to over 110 GHz. Proposed transition is expected compact radar and various applications.

Development and Application of Group IV Transition Metal Oxide Precursors

  • Kim, Da Hye;Park, Bo Keun;Jeone, Dong Ju;Kim, Chang Gyoun;Son, Seung Uk;Chung, Taek-Mo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.303.2-303.2
    • /
    • 2014
  • The oxides of group IV transition metals such as titanium, zirconium, hafnium have many important current and future application, including protective coatings, sensors and dielectric layers in thin film electroluminescent (TFEL) devices. Recently, group IV transition metal oxide films have been intensively investigated as replacements for SiO2. Due to high permittivities (k~14-25) compared with SiO2 (k~3.9), large band-gaps, large band offsets and high thermodynamic stability on silicon. Herein, we report the synthesis of new group IV transition metal complexes as useful precursors to deposit their oxide thin films using chemical vapor deposition technique. The complexes were characterized by FT-IR, 1H NMR, 13C NMR and thermogravimetric analysis (TGA). Newly synthesised compounds show high volatility and thermal stability, so we are trying to deposit metal oxide thin films using the complexes by Atomic Layer Deposition (ALD).

  • PDF