• Title/Summary/Keyword: transient vibration analysis

Search Result 243, Processing Time 0.028 seconds

Vibration Analysis of a Rack and Pinon Typed Feed Drive System for a 5-Head Router Machine (Rack/Pinon 방식의 5-Head 라우터 머신 이송 시스템의 진동해석)

  • Choi, Y.H.;Choi, E.Y.;Jang, S.H.;Ha, J.S.;Cho, Y.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.269-272
    • /
    • 2005
  • In order to prevent a router machine feed drive system from transient operational vibration, this paper presents vibration analysis of a rack and pinion typed feed drive system for a router machine. The feed drive system was mathematically idealized as a 5-degree-of-freedom lumped parameter model. Stiffness parameters of motor-shaft, rack and pinion gears, and machine structure were appropriately considered in the modeling. Computational experiment was carried out to obtain vibrations of the feed drive system during its transient speed operation.

  • PDF

The dynamic response prediction of the structure by transient vibration using Semi-Empirical Method (준 경험적 방법을 이용한 충격성 진동에 대한 구조물의 동적 응답의 예측)

  • Lee, Hong-Ki;Baek, Jae-Ho;Kim, Kang-Boo;Woun, Young-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1945-1950
    • /
    • 2000
  • When one build a building that posses Precison production process to be sensitive to vibration and SMD to procuce a large dynamic force, how do one predict & answer vibration control problem at building structure design at first stage, That is a question. It has tried to predict dynamic response and establish answering about global or local dynamic problem in building using experimental and analysis method. One of such a try, it be proposed Semi-Empirial Method that reduce error element of input information about dynamic analysis using dynamic experimental study and measurement data in the basis of real-structure. In this paper, the dynamic response problem about RC-structure building that will be set-up SMD produce large transient dynamic force using Semi-Empirical Method.

  • PDF

Objective Evaluation of Vehicle Interior Noise in Transient Operation (주행중 차실 내부 소음의 평가)

  • Jeong, Hyuk;Ih, Jeong-Guon
    • Journal of KSNVE
    • /
    • v.6 no.4
    • /
    • pp.499-502
    • /
    • 1996
  • Interior noise, engine speed and vehicle speed are measured under transient road-load condition and interior noise signal is transformed by using the transient signal analysis methods, such as the spectrogram and wavelet transform. Using the analyzed results, subjective noise metrics such as the loudness, sharpness and articulation index at each vehicle speed can be estimated and characteristics of interior noise for various running modes can be discussed in the viewpoint of noise quality.

  • PDF

Vibration Analyses of the STSAT-3 Satellite (과학기술위성 3 호 진동해석)

  • Cho, Hee-Keun;Suh, Jung-Ki
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.502-507
    • /
    • 2008
  • An entire composite structure satellite is developing for the first time in Korea. All of the structure is made of CFRP-composite faced aluminum honeycomb sandwich structure. Here the random and sinusoidal spectrum analysis of the satellite was carried out by using the finite element method. The general spectrum analysis was herein performed but also the PSD (power spectrum density) function for random vibration analysis had been transformed into equivalent time domain function and then transient analysis is conducted. The time history of displacement, acceleration, stress and velocity responses with respect to the PSD input has been achieved by the time dependent transient function transformed from frequency PDS function. It enables one to perform dynamic durability analysis and then expect the life time of the composite structure. The composite faced sandwich structure's spectrum analysis of a domestically-developed satellite, STSAT-3, has been discussed in the present study.

  • PDF

A Study on the Analysis Algorithm of Time Historical Response of Straight-line Structure by the Transfer Stiffness Coefficient Method (전달강성계수법에 의한 직선형 구조물의 시간 이력응답 해석알고리즘에 관한 연구)

  • Moon, D.H.;Kang, H.S.;Choi, M.S.
    • Journal of Power System Engineering
    • /
    • v.3 no.1
    • /
    • pp.74-79
    • /
    • 1999
  • This paper describes formulation for algorithm of time historical response analysis of vibration for straight-line structure. This method is derived from a combination of the transfer stiffness coefficient method and the Newmark method. And this present method improves the computational accuracy of the transient vibration response analysis remarkably owing to several advantages of the transfer stiffness coefficient method. We regarded the structure as a lumped mass system here. The analysis algorithm for the time historical response was formulated for the straight-line structure containing crooked, tree type system. The validity of the present method compared with the transfer matrix method and the Finite Element Method for transient vibration analysis is demonstrated through the numerical computations.

  • PDF

2-Dimensional FEM Based Transient Analysis for an Efficient Design of Acoustic Windows (효율적인 음향 윈도우 설계를 위한 2차원 유한요소법 기반의 과도 해석)

  • Kim, Y.C.;Kim, S.K.;Yoon, S.W.;Lee, Y.;Cho, M.S.;Shin, Ku-Kyun;Koo, J.C.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.7
    • /
    • pp.673-678
    • /
    • 2009
  • The efficiency of active sonar that is used underwater observation equipment is important for obtain the information of topography and trace for the objects. Sound wave transmitted from sonar are distorted by acoustic window which is to protect sonar. Making various sonar dome is impossible for experiment, because consumed unnecessary time and expense. So, the purpose of this study is to simulate and analyze the acoustic window propagated sound wave from sonar for designing model reduced insertion loss. Simulation is performed by transient analysis and fluid-structure interaction analysis. As a result, this study will give a opportunity for efficient design of sonar dome without high cost and time consumption.

Development of Software for Dynamic Analysis of Piezoelectric Underwater Transducers (압전 수중음향 센서의 동적해석 프로그램 개발)

  • 최준화;김재환;조치영
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.1053-1058
    • /
    • 2003
  • Piezoelectric under water acoustic transducer is a kind of device for under water detection working as not only an actuator but also a sensor. The technique that can predict acoustical characteristics of transducer is important for robust design of transducer in harsh underwater environment. This paper represents the development of software for analyzing dynamic characteristics of piezoelectric acoustic transducers based on finite element method. Modal and transient analysis modulo for acoustic transducers are developed TWO dimensional model for Tonpilz transducer is used for the test of the developed nodal and transient analysis modules. and comparison is made with a commercial code, ANSYS.

  • PDF

Investigation on Forced Vibration Behavior of Composite Main Wing Structure of A Small Scale WIG Craft Excited by Engine and Propeller (엔진 및 프로펠러에 의해 가진되는 소형 위그선 복합재 주날개의 진동 거동 해석)

  • Kong, Chang-Duck;Yoon, Jae-Huy;Park, Hyun-Bum
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.1028-1035
    • /
    • 2007
  • this study, forced vibration analysis was performed on the composite main wing structure of a small scale WIG craft which is equipped two-stroke pusher type reciprocating engine. The structural vibration analysis based on the finite element method was performed using a commercial FEM code, MSC/NASTRAN. Excitations for the frequency response analysis were assumed as the H-mode(horizontal mode), the V-mode(vertical mode) and the X-mode(twisted mode) which are typical main vibration modes of engine. And excitations for the transient response analysis were assumed as the L-mode(longitudinal mode) with the oscillating propeller thrust which occurs.

Transient analysis of cross-ply laminated shells using FSDT: Alternative formulation

  • Sahan, Mehmet Fatih
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.889-907
    • /
    • 2015
  • This paper aims to present an alternative analytical method for transient vibration analysis of doubly-curved laminated shells subjected to dynamic loads. In the method proposed, the governing differential equations of laminated shell are derived using the dynamic version of the principle of virtual displacements. The governing equations of first order shear deformation laminated shell are obtained by Navier solution procedure. Time-dependent equations are transformed to the Laplace domain and then Laplace parameter dependent equations are solved numerically. The results obtained in the Laplace domain are transformed to the time domain with the help of modified Durbin's numerical inverse Laplace transform method. Verification of the presented method is carried out by comparing the results with those obtained by Newmark method and ANSYS finite element software. Also effects of number of laminates, different material properties and shell geometries are discussed. The numerical results have proved that the presented procedure is a highly accurate and efficient solution method.

Study for Characteristics of DDAM using MIL-S-901D Shock Test and Transient Response Analysis (MIL-S-901D 충격시험과 과도응답해석을 이용한 DDAM 특성에 관한 연구)

  • Song, Oh-Seop;Kim, Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.11 s.116
    • /
    • pp.1132-1139
    • /
    • 2006
  • Non-contact underwater explosions against surface ship could cause extensive equipment damage during wartime service. Thus, the need to develop methods for the design of shock resistant equipment structures and systems was strongly established. In analytical methods, DDAM(Dynamic Design and Analysis Method) and transient repsonse method are used for ship shock design. In this paper, to analyze the characteristics of DDAM, medium weight shock test, DDAM and transient response analysis for missile system equipment are performed.