• Title/Summary/Keyword: transglutaminase inhibitor

Search Result 10, Processing Time 0.032 seconds

A Novel Transglutaminase Substrate from Streptomyces mobaraensis Inhibiting Papain-Like Cysteine Proteases

  • Sarafeddinov, Alla;Arif, Atia;Peters, Anna;Fuchsbauer, Hans-Lothar
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.6
    • /
    • pp.617-626
    • /
    • 2011
  • Transglutaminase from Streptomyces mobaraensis is an enzyme of unknown function that cross-links proteins to high molecular weight aggregates. Previously, we characterized two intrinsic transglutaminase substrates with inactivating activities against subtilisin and dispase. This report now describes a novel substrate that inhibits papain, bromelain, and trypsin. Papain was the most sensitive protease; thus, the protein was designated Streptomyces papain inhibitor (SPI). To avoid transglutaminase-mediated glutamine deamidation during culture, SPI was produced by Streptomyces mobaraensis at various growth temperatures. The best results were achieved by culturing for 30-50 h at $42^{\circ}C$, which yielded high SPI concentrations and negligibly small amounts of mature transglutaminase. Transglutaminasespecific biotinylation displayed largely unmodified glutamine and lysine residues. In contrast, purified SPI from the $28^{\circ}C$ culture lost the potential to be cross-linked, but exhibited higher inhibitory activity as indicated by a significantly lower $K_i$ (60 nM vs. 140 nM). Despite similarities in molecular mass (12 kDa) and high thermostability, SPI exhibits clear differences in comparison with all members of the wellknown family of Streptomyces subtilisin inhibitors. The neutral protein (pI of 7.3) shares sequence homology with a putative protein from Streptomyces lavendulae, whose conformation is most likely stabilized by two disulfide bridges. However, cysteine residues are not localized in the typical regions of subtilisin inhibitors. SPI and the formerly characterized dispase-inactivating substrate are unique proteins of distinct Streptomycetes such as Streptomyces mobaraensis. Along with the subtilisin inhibitory protein, they could play a crucial role in the defense of vulnerable protein layers that are solidified by transglutaminase.

Novel Therapeutic Approach toward Inflammatory Diseases: Targeting Transglutaminase 2

  • Kim Soo-Youl;Kim Hong-Yeoul;Lee Jae-Dong
    • The Journal of Korean Medicine
    • /
    • v.25 no.4
    • /
    • pp.188-199
    • /
    • 2004
  • Transglutaminase 2 (TGase 2) is an enzyme that is widely used in many biological systems for generic tissue stabilization purposes or immediate defenses for wounds. Many reports have showed that TGase 2 is aberrantly activated in tissues and cells and contributes to a variety of diseases, including neurodegenerative diseases and autoimmune diseases. In most cases, the TGase 2 appears to be a factor in the formation of inappropriate proteinaceous aggregates that may be cytotoxic. However, in other cases such as celiac disease, arthritis, lupus, amyotrophic lateral sclerosis, TGase 2 is involved in the generation of autoantibodies. This suggests the possibility that the inappropriate expression and/or presentation of TGase 2 to T cells might contribute to these diseases in genetically predisposed individuals. Others and we have found that TGase 2 expression is also increased in the inflammation process. We also demonstrated reverse of inflammation by TGase inhibition. Furthermore we discovered the genuine role of TGase 2 in immune cell activation. Increase of TGase activity induces or exacerbates inflammation via NF-κB activation without I-κBα kinase signalings. This review will examine a possibility of TGase inhibitors as therapeutic agents in a variety of inflammatory diseases.

  • PDF

Regulation of Inflammatory Response in Periodontal Ligament Cells by Transglutaminase 2

  • Lee, Sun Young;Jang, Cheol Hun;Ryu, Je-Hwang
    • International Journal of Oral Biology
    • /
    • v.42 no.4
    • /
    • pp.191-196
    • /
    • 2017
  • Transglutaminase2 (TGM2) is a multi-functional calcium dependent enzyme that affects angiogenesis, apoptosis, differentiation, attachment, and changes in the extracellular matrix. However, its function in periodontal tissue has not yet been studied. The aim of this study was to investigate the association of the TGM2 expression and the modulation of inflammatory mediators in inflamed periodontal ligament (PDL) cells induced by pro-inflammatory cytokines such as Interleukin-$1{\beta}$ and the Tumor necrosis $factor-{\alpha}$. The expression of TGM2 was increased in the inflamed periodontal tissue and PDL cells. Over-expressed TGM2 in the PDL cells increased expression of MMP1, MMP3, IL-6, CXCL8, and PTGS2. Conversely, inhibition of TGM2 activity using LDN27219, a TGM2 inhibitor, resulted in decreased expression of MMP1, MMP3, IL-6, and CXCL8. The mRNA expression was confirmed by RT-PCR and quantified by qRT-PCR. Protein levels were also confirmed by immunofluoroscence staining. These results suggest that TGM2 plays an important role in the regulation of inflammatory mediators which exacerbate tissue damage in inflamed periodontal tissue.

12-O-Tetradecanoylphorbol-13-Acetate Induces Keratin 8 Phosphorylation and Reorganization via Expression of Transglutaminase-2

  • Lee, Eun Ji;Park, Mi Kyung;Kim, Hyun Ji;Kang, June Hee;Kim, You Ri;Kang, Gyeoung Jin;Byun, Hyun Jung;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.22 no.2
    • /
    • pp.122-128
    • /
    • 2014
  • The stiffness of cancer cells is attributable to intermediate filaments such as keratin. Perinuclear reorganization via phosphorylation of specific serine residue in keratin is implicated in the deformability of metastatic cancer cells including the human pancreatic carcinoma cell line (PANC-1). 12-O-Tetradecanoylphorbol-13-acetate (TPA) is a potent tumor promoter and protein kinase C (PKC) activator. However, its effects on phosphorylation and reorganization of keratin 8 (K8) are not well known. Therefore, we examined the underlying mechanism and effect of TPA on K8 phosphorylation and reorganization. TPA induced phosphorylation and reorganization of K8 and transglutaminase-2 (Tgase-2) expression in a time- and dose-dependent manner in PANC-1 cells. These effects peaked after 45 min and 100 nM of TPA treatment. We next investigated, using cystamine (CTM), Tgase inhibitor, and Tgase-2 gene silencing, Tgase-2's possible involvement in TPA-induced K8 phosphorylation and reorganization. We found that Tgase-2 gene silencing inhibited K8 phosphorylation and reorganization in PANC-1 cells. Tgase-2 gene silencing, we additionally discovered, suppressed TPA-induced migration of PANC-1 cells and Tgase-2 overexpression induced migration of PANC-1 cells. Overall, these results suggested that TPA induced K8 phosphorylation and reorganization via Tgase-2 expression in PANC-1 cells.

A Role of Tissue Transglutaminase in the Germinal Vesicle Breakdown of Mouse Oocytes

  • Kim, Sung-Woo;Park, Jin-Ki;Lee, Yun-Keun;Lee, Poongyeon;Kim, Jung-Ho;Han, Joo-Hee;Park, Chun-Gyu;Ha, Kwon-Soo;Chang, Won-Kyong
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.61-61
    • /
    • 2003
  • We have investigated the novel function of tissue transglutaminase (tTG) in the germinal vesicle breakdown (GVBD) of mouse oocyte. tTG was identified in ooplasm and germinal vesicle by immunostaining assay. Spontaneous maturation of the oocytes elevated in situ activity of tTG by over 2.5 fold at 3 hr, which was determined by a confocal microscopic assay. However, incubation with monodansylcadaverine (MDC), a tTG inhibitor, blocked the activation of tTG. The possible role of tTG in GVBD was investigated by the use of two tTG inhibitors, MDC and cystamine. MDC largely inhibited the GVBD by a concentration dependent manner. GV-stage oocytes were matured to the GVBD stage by 78% at 3 hr in BWW culture medium. However, in the oocytes incubated with MDC for 3 hr, the GVBD rates were 43 and 11% by 50 and 100 mM, respectively. MDC also blocked the entry of 70 kDa TRITC-dextran from the ooplasm to the compartment of germinal vesicle, indicating a possible inhibition of nuclear pore disassembly by MDC. The role of tTG in GVBD was further investigated by microinjection with cystamine. The control oocytes, injected with DPBS, showed about 80 % of GVBD at 3 hr. But the oocytes injected with cystamine showed 15% of GVBD at 3 hr and a little higher rate at 6 hr. In addition, the inhibition of GVBD maturation by MDC was reversible by washing. These results suggested that tTG was involved in the early event of mouse oocyte maturation

  • PDF

The Role of Transglutaminase-2 in Fibroproliferation after Lipopolysaccharide-induced Acute Lung Injury (리포다당질로 유도된 급성 폐손상 후 섬유화증식에서 Transglutaminase-2의 역할)

  • Kim, Je-Hyeong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.5
    • /
    • pp.337-347
    • /
    • 2010
  • Background: Transglutaminase-2 (TG-2) has been reported to play an important role in the process of fibrosis. However, TG-2 studies on fibroproliferation of acute lung injury (ALI) are absent. The purpose of this study was to investigate the role of TG-2 in the fibroproliferation of lipopolysaccharide (LPS)-induced ALI. Methods: The male C57BL/6 mice of 5 weeks age were divided into 3 groups; control group (n=30) in which $50{\mu}L$ of saline was given intratracheally (IT), LPS group (n=30) in which LPS 0.5 mg/kg/$50{\mu}L$ of saline was given IT, and LPS+Cyst group treated with intraperitoneal 200 mg/kg of cystamine, competitive inhibitor of TG-2, after induction of ALI by LPS. TG-2 activity and nuclear factor $(NF)-{\kappa}B$ were measured in lung tissue homogenate. Tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-$1{\beta}$, IL-6, myeloperoxidase (MPO), and transforming growth factor (TGF)-${\beta}1$ were measured using bronchoalveolar lavage fluids. Histopathologic ALI score and Mallory's phosphotunistic acid hematoxylin (PTAH) for collagen and fibronectin deposition were performed. Results: The TG-2 activities in the LPS group were significantly higher than the control and LPS+Cyst groups (p<0.05). The TNF-${\alpha}$ and IL-$1{\beta}$ concentrations and $NF-{\kappa}B$ activity were lower in the LPS+Cyst group than the LPS group (p<0.05). The LPS+Cyst group showed lower MPO, ALI score, TGF-${\beta}1$ concentration, and Mallory's PTAH stain than the LPS group, but the differences were not significant (p>0.05). Conclusion: Inhibition of TG-2 activity in the LPS-induced ALI prevented early inflammatory parameters, but had limited effects on late ALI and fibroproliferative parameters.

NF-κB and Therapeutic Approach

  • Lee, Chang-Hoon;Kim, Soo-Youl
    • Biomolecules & Therapeutics
    • /
    • v.17 no.3
    • /
    • pp.219-240
    • /
    • 2009
  • Since NF-${\kappa}B$ has been identified as a transcription factor associated with immune cell activation, groups of researchers have dedicated to reveal detailed mechanisms of nuclear factor of ${\kappa}B$ (NF-${\kappa}B$) in inflammatory signaling for decades. The various molecular components of NF-${\kappa}B$ transcription factor pathway have been being evaluated as important therapeutic targets due to their roles in diverse human diseases including inflammation, cystic fibrosis, sepsis, rheumatoid arthritis, cancer, atherosclerosis, ischemic injury, myocardial infarction, osteoporosis, transplantation rejection, and neurodegeneration. With regards to new drugs directly or indirectly modulating the NF-${\kappa}B$ pathway, FDA recently approved a proteasome inhibitor bortezomib for the treatment of multiple myeloma. Many pharmaceutical companies have been trying to develop new drugs to inhibit various kinases in the NF-${\kappa}B$ signaling pathway for many therapeutic applications. However, a gene knock-out study for $IKK{\beta}$ in the NF-${\kappa}B$ pathway has given rise to controversies associated with efficacy as therapeutics. Mice lacking hepatocyte $IKK{\beta}$ accelerated cancer instead of preventing progress of cancer. However, it is clear that pharmacological inhibition of $IKK{\beta}$ appears to be beneficial to reduce HCC. This article will update issues of the NF-${\kappa}B$ pathway and inhibitors regulating this pathway.

Transglutaminase-2 Is Involved in Expression of Osteoprotegerin in MG-63 Osteosarcoma Cells

  • Lee, Hye Ja;Lee, Chang Hoon
    • Biomolecules & Therapeutics
    • /
    • v.21 no.3
    • /
    • pp.204-209
    • /
    • 2013
  • Osteoprotegerin (OPG) is a secreted glycoprotein and a member of the tumor necrosis factor receptor superfamily. It usually functions in bone remodeling, by inhibiting osteoclastogenesis through interaction with a receptor activator of the nuclear factor ${\kappa}B$ (RANKL). Transglutaminases-2 (Tgase-2) is a group of multifunctional enzymes that plays a role in cancer cell metastasis and bone formation. However, relationship between OPG and Tgase-2 is not studied. Therefore, we investigated the involvement of 12-O-Tetradecanoylphorbol 13-acetate in the expression of OPG in MG-63 osteosarcoma cells. Interleukin-$1{\beta}$ time-dependently induced OPG and Tgase-2 expression in cell lysates and media of the MG-63 cells by a Western blot. Additional 110 kda band was found in the media of MG-63 cells. 12-O-Tetradecanoylphorbol 13-acetate also induced OPG and Tgase-2 expression. However, an 110 kda band was not found in TPA-treated media of MG-63 cells. Cystamine, a Tgase-2 inhibitor, dose-dependently suppressed the expression of OPG in MG-63 cells. Gene silencing of Tgase-2 also significantly suppressed the expression of OPG in MG-63 cells. Next, we examined whether a band of 110 kda of OPG contains an isopeptide bond, an indication of Tgase-2 action, by monoclonal antibody specific for the isopeptide bond. However, we could not find the isopeptide bond at 110 kda but 77 kda, which is believed to be the band position of Tgase-2. This suggested that 110 kda is not the direct product of Tgase-2's action. All together, OPG and Tgase-2 is induced by IL-$1{\beta}$ or TPA in MG-63 cells and Tgase-2 is involved in OPG expression in MG-63 cells.

Transglutaminase-2 Is Involved in All-Trans Retinoic Acid-Induced Invasion and Matrix Metalloproteinases Expression of SH-SY5Y Neuroblastoma Cells via NF-κB Pathway

  • Lee, Hye-Ja;Park, Mi-Kyung;Bae, Hyun-Cheol;Yoon, Hee-Jung;Kim, Soo-Youl;Lee, Chang-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.20 no.3
    • /
    • pp.286-292
    • /
    • 2012
  • All-trans retinoic acid (ATRA) is currently used in adjuvant differentiation-based treatment of residual or relapsed neuroblastoma (NB). It has been reported that short-term ATRA treatment induces migration and invasion of SH-SY5Y via transglutaminase-2 (Tgase-2). However, the detailed mechanism of Tgase-2's involvement in NB cell invasion remains unclear. Therefore we investigated the role of Tgase-2 in invasion of NB cells using SH-SY5Y cells. ATRA dose-dependently induced the invasion of SH-SY5Y cells. Cystamine (CTM), a well known tgase inhibitor suppressed the ATRA-induced invasion of SH-SY5Y cells in a dose-dependent manner. Matrix metalloproteinase -9 (MMP-9) and MMP-2, well known genes involved in invasion of cancer cells were induced in the ATRA-induced invasion of the SH-SH5Y cells. Treatment of CTM suppressed the MMP-9 and MMP-2 enzyme activities in the ATRA-induced invasion of the SH-SY5Y cells. To confirm the involvement of Tgase-2, gene silencing of Tgase-2 was performed in the ATRA-induced invasion of the SH-SH5Y cells. The siRNA of Tgase-2 suppressed the MMP-9 and MMP-2 activity of the SH-SY5Y cells. MMP-2 and MMP-9 are well known target genes of NF-${\kappa}B$. Therefore the relationship of Tgase-2 and NF-${\kappa}B$ in the ATRA-induced invasion of the SH-SY5Y cells was examined using siRNA and CTM. ATRA induced the activation of NF-${\kappa}B$ in the SH-SY5Y cells and CTM suppressed the activation of NF-${\kappa}B$. Gene silencing of Tgase-2 suppressed the MMP expression by ATRA. These results suggested that Tgase-2 might be a new target for controlling the ATRA-induced invasion of NBs.

The skin protective effects of compound K, a metabolite of ginsenoside Rb1 from Panax ginseng

  • Kim, Eunji;Kim, Donghyun;Yoo, Sulgi;Hong, Yo Han;Han, Sang Yun;Jeong, Seonggu;Jeong, Deok;Kim, Jong-Hoon;Cho, Jae Youl;Park, Junseong
    • Journal of Ginseng Research
    • /
    • v.42 no.2
    • /
    • pp.218-224
    • /
    • 2018
  • Background: Compound K (CK) is a ginsenoside, a metabolite of Panax ginseng. There is interest both in increasing skin health and antiaging using natural skin care products. In this study, we explored the possibility of using CK as a cosmetic ingredient. Methods: To assess the antiaging effect of CK, RT-PCR was performed, and expression levels of matrix metalloproteinase-1, cyclooxygenase-2, and type I collagen were measured under UVB irradiation conditions. The skin hydrating effect of CK was tested by RT-PCR, and its regulation was explored through immunoblotting. Melanin content, melanin secretion, and tyrosinase activity assays were performed. Results: CK treatment reduced the production of matrix metalloproteinase-1 and cyclooxygenase-2 in UVB irradiated NIH3T3 cells and recovered type I collagen expression level. Expression of skin hydrating factors-filaggrin, transglutaminase, and hyaluronic acid synthases-1 and -2-were augmented by CK and were modulated through the inhibitor of ${\kappa}B{\alpha}$, c-Jun N-terminal kinase, or extracellular signal-regulated kinases pathway. In the melanogenic response, CK did not regulate tyrosinase activity and melanin secretion, but increased melanin content in B16F10 cells was observed. Conclusion: Our data showed that CK has antiaging and hydrating effects. We suggest that CK could be used in cosmetic products to protect the skin from UVB rays and increase skin moisture level.