Browse > Article
http://dx.doi.org/10.4014/jmb.1012.12004

A Novel Transglutaminase Substrate from Streptomyces mobaraensis Inhibiting Papain-Like Cysteine Proteases  

Sarafeddinov, Alla (Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt)
Arif, Atia (Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt)
Peters, Anna (Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt)
Fuchsbauer, Hans-Lothar (Department of Chemical Engineering and Biotechnology, University of Applied Sciences of Darmstadt)
Publication Information
Journal of Microbiology and Biotechnology / v.21, no.6, 2011 , pp. 617-626 More about this Journal
Abstract
Transglutaminase from Streptomyces mobaraensis is an enzyme of unknown function that cross-links proteins to high molecular weight aggregates. Previously, we characterized two intrinsic transglutaminase substrates with inactivating activities against subtilisin and dispase. This report now describes a novel substrate that inhibits papain, bromelain, and trypsin. Papain was the most sensitive protease; thus, the protein was designated Streptomyces papain inhibitor (SPI). To avoid transglutaminase-mediated glutamine deamidation during culture, SPI was produced by Streptomyces mobaraensis at various growth temperatures. The best results were achieved by culturing for 30-50 h at $42^{\circ}C$, which yielded high SPI concentrations and negligibly small amounts of mature transglutaminase. Transglutaminasespecific biotinylation displayed largely unmodified glutamine and lysine residues. In contrast, purified SPI from the $28^{\circ}C$ culture lost the potential to be cross-linked, but exhibited higher inhibitory activity as indicated by a significantly lower $K_i$ (60 nM vs. 140 nM). Despite similarities in molecular mass (12 kDa) and high thermostability, SPI exhibits clear differences in comparison with all members of the wellknown family of Streptomyces subtilisin inhibitors. The neutral protein (pI of 7.3) shares sequence homology with a putative protein from Streptomyces lavendulae, whose conformation is most likely stabilized by two disulfide bridges. However, cysteine residues are not localized in the typical regions of subtilisin inhibitors. SPI and the formerly characterized dispase-inactivating substrate are unique proteins of distinct Streptomycetes such as Streptomyces mobaraensis. Along with the subtilisin inhibitory protein, they could play a crucial role in the defense of vulnerable protein layers that are solidified by transglutaminase.
Keywords
Streptomyces; cysteine protease inhibitor; papain inhibitor; transglutaminase; transglutaminase substrate; oligoglutamate;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Takayuki, S. and R. A. L. van der Hoorn. 2008. Papain-like cysteine proteases: Key players at molecular battlefields employed by both plants and their invaders. Mol. Plant Pathol. 9: 119- 125.
2 Uchida, I., S. Makino, C. Sasakawa, M. Yoshikawa, C. Sugimoto, and N. Terakado. 1993. Identification of a novel gene, dep, associated with depolymerization of the capsular polymer in Bacillus anthracis. Mol. Microbiol. 9: 487-496.   DOI   ScienceOn
3 Weimer, S., K. Oertel, and H.-L. Fuchsbauer. 2006. A quenched fluorescent dipeptide for assaying dispase- and thermolysin-like proteases. Anal. Biochem. 352: 110-119.   DOI   ScienceOn
4 Willey, J. M., A. Willems, S. Kodani, and J. R. Nodwell. 2006. Morphogenetic surfactants and their role in the formation of aerial hyphae in Streptomyces coelicolor. Mol. Microbiol. 59: 731-742.   DOI   ScienceOn
5 Zhang, D., M. Wang, G. Du, Q. Zhao, J. Wu, and J. Chen. 2008. Surfactant protein of the Streptomyces subtilisin inhibitor family inhibits transglutaminase activation in Streptomyces hygroscopicus. J. Agric. Food Chem. 56: 3403-3408.   DOI   ScienceOn
6 Zotzel, J., P. Keller, and H.-L. Fuchsbauer. 2003. Transglutaminase from Streptomyces mobaraensis is activated by an endogenous metalloprotease. Eur. J. Biochem. 270: 3214-3222.   DOI   ScienceOn
7 Zotzel, J., R. Pasternack, C. Pelzer, M. Mainusch, and H.-L. Fuchsbauer. 2003. Activated transglutaminase from Streptomyces mobaraensis is processed by a tripeptidyl aminopeptidase in the final step. Eur. J. Biochem. 270: 4149-4155.   DOI   ScienceOn
8 Bentley, S. D., K. F. Chater, A. M. Cerdano-Tarragena, G. L. Challis, N. R. Thomson, K. D. James, et al. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141-147.   DOI   ScienceOn
9 Ando, H., M. Adachi, K. Umeda, A. Matsuura, M. Nonaka, R. Uchio, H. Tanaka, and M. Motoki. 1989. Purification and characteristics of a novel transglutaminase derived from microorganisms. Agric. Biol. Chem. 53: 2613-2617.   DOI
10 Bah, S., B. S. Paulsen, D. Diallo, and H. T. Johansen. 2006. Characterization of cysteine proteases in Malian medicinal plants. J. Ethnopharmacol. 107: 189-198.   DOI   ScienceOn
11 Blackman, M. J. 2008. Malarial proteases and host cell egress: An 'emerging' cascade. Cell. Microbiol. 10: 1925-1934.   DOI   ScienceOn
12 Brömme, D., F. S. Nallaseth, and B. Turk. 2004. Production and activation of recombinant papain-like cysteine proteases. Methods 32: 199-206.   DOI   ScienceOn
13 Di Berardo, C., D. S. Capstick, M. J. Bibb, K. C. Findlay, M. J. Buttner, and M. A. Elliot. 2008. Function and redundancy of the chaplin cell surface proteins in aerial hypha formation, rodlet assembly, and viability in Streptomyces coelicolor. J. Bacteriol. 190: 5879-5889.   DOI   ScienceOn
14 Candela, T. and A. Fouet. 2006. Poly-gamma-glutamate in bacteria. Mol. Microbiol. 60: 1091-1098.   DOI   ScienceOn
15 Chater, K. F., S. Biró, K. J. Lee, T. Palmer, and H. Schrempf. 2010. The complex extracellular biology of Streptomyces. FEMS Microbiol. Rev. 34: 171-198.   DOI   ScienceOn
16 Claessen, D., I. Stokroos, H. J. Deelstra, N. A. Penninga, C. Bormann, J. A. Salas, L. Dijkhuizen, and H. A. B. Wösten. 2004. The formation of the rodlet layer of Streptomycetes is the result of the interplay between rodlins and chaplins. Mol. Microbiol. 53: 433-443.   DOI   ScienceOn
17 De Jong, W., H. A. B. Wosten, L. Dijkhuizen, and D. Claessen. 2009. Attachment of Streptomyces coelicolor is mediated by amyloidal fimbriae that are anchored to the cell surface via cellulose. Mol. Microbiol. 73: 1128-1140.   DOI   ScienceOn
18 Devaraj, S. G., N. Wang, Z. Chen, Z. Chen, M. Tseng, N. Barretto, et al. 2007. Regulation of IRF-3-dependent innate immunity by the papain-like protease domain of the severe acute respiratory syndrome coronavirus. J. Biol. Chem. 282: 32208-32221.   DOI
19 Elliot, M. A., N. Karoonuthaisiri, J. Huang, M. J. Bibb, S. N. Cohen, C. M. Cao, and M. J. Buttner. 2003. The chaplins: A family of hydrophobic cell-surface proteins involved in aerial mycelium formation in Streptomyces coelicolor. Genes Dev. 17: 1727-1740.   DOI   ScienceOn
20 Friedkin, M., L. T. Plante, E. J. Crawford, and M. Crumm. 1975. Inhibition of thymidylate synthetase and dihydrofolate reductase by naturally occurring oligoglutamate derivatives of folic acid. J. Biol. Chem. 250: 5614-5621.
21 Kanaji, T., H. Ozaki, T. Takao, H. Kawajiri, H. Ide, M. Motoki, and Y. Shimonishi. 1993. Primary structure of microbial transglutaminase from Streptoverticillium sp. strain S-8112. J. Biol. Chem. 268: 11565-11572.
22 Gerber, U., U. Jucknischke, S. Putzien, and H.-L. Fuchsbauer. 1994. A rapid and simple method for the purification of transglutaminase from Streptoverticillium mobaraense. Biochem. J. 299: 825-829.   DOI
23 Hiraga, K., T. Suzuki, and K. Oda. 2000. A novel doubleheaded proteinaceous inhibitor for metalloproteinase and serine proteinase. J. Biol. Chem. 275: 25173-25179.   DOI
24 Ikeda, H., J. Ishikawa, A. Hanamoto, M. Shinose, H. Kikuchi, T. Shiba, Y. Sakaki, M. Hattori, and S. Omura. 2003. Complete genome sequence and comparative analysis of the industrial microorganism Streptomyces avermitilis. Nat. Biotechnol. 21: 526-531.   DOI   ScienceOn
25 Kashiwagi, T., K. Yokoyama, K. Ishikawa, K. Ono, D. Ejima, H. Matsui, and E. Suzuki. 2002. Crystal structure of microbial transglutaminase from Streptoverticillium mobaraense. J. Biol. Chem. 277: 44252-44260.   DOI
26 Koshima, S., M. Terabe, S. Taguchi, H. Momose, and K. Miura. 1994. Primary structure and inhibitory properties of a proteinase inhibitor produced by Streptomyces cacaoi. Biochim. Biophys. Acta 1207: 120-125.   DOI   ScienceOn
27 Li, N., P. Yun, M. A. Nadkarni, N. Babapoor Ghadikolaee, K.- A. Nguyen, M. Lee, N. Hunter, and C. A. Collyer. 2010. Structure determination and analysis of a haemolytic gingipain adhesin domain from Porphyromonas gingivalis. Mol. Microbiol. 76: 861-873.   DOI   ScienceOn
28 Mao, Y. Q., M. Varoglu, and D. H. Sherman. 1999. Molecular characterization and analysis of the biosynthetic gene cluster for the antitumor antibiotic mitomycin C from Streptomyces lavendulae NRRL 2564. Chem. Biol. 6: 251-263.   DOI
29 Mehta, K. and R. Eckert (eds.). 2005. Transglutaminases. Family of enzymes with diverse functions. In J. R. Bertino (ed.). Progress in Experimental Tumor Research. Karger, Basel, Switzerland.
30 McCormick, J. R. 2009. Cell division is dispensable but not irrelevant in Streptomyces. Curr. Opin. Microbiol. 12: 689-698.   DOI   ScienceOn
31 Nishikawa, M. and K. Kobayashi. 2009. Streptomyces roseoverticillatus produces two different poly(amino acid)s: Lariatshaped $\gamma$-poly(L-glutamic acid) and$\varepsilon$-poly(L-lysine). Microbiology 155: 2988-2993.   DOI
32 Ohnishi, Y., J. Ishikawa, H. Hara, H. Suzuki, M. Ikenoya, H. Ikeda, A. Yamashita, M. Hattori, and S. Horinouchi. 2008. Genome sequence of the streptomycin-producing microorganism Streptomyces griseus IFO 13350. J. Bacteriol. 190: 4050-4060.   DOI   ScienceOn
33 Osera, C., G. Amati, C. Calvio, and A. Galizzi. 2009. SwrAA activates poly-$\gamma$-glutamate synthesis in addition to swarming in Bacillus subtilis. Microbiology 155: 2282-2287.   DOI
34 Pasternack, R., S. Dorsch, J. T. Otterbach, I. R. Robenek, S. Wolf, and H.-L. Fuchsbauer. 1998. Bacterial pro-transglutaminase from Streptoverticillium mobaraense. Purification, characterisation and sequence of the zymogen. Eur. J. Biochem. 257: 570-576.   DOI   ScienceOn
35 Pfleiderer, C., M. Mainusch, J. Weber, M. Hils, and H.-L. Fuchsbauer. 2005. Inhibition of bacterial transglutaminase by its heat-treated pro-enzyme. Microbiol. Res. 160: 265-271.   DOI   ScienceOn
36 Schreier, H. J. 1993. Biosynthesis of glutamine and glutamate and the assimilation of ammonia, pp. 281-298. In A. L. Sonenshein, J. A. Hoch, and R. Losick (eds.). Bacillus subtilis and Other Gram-Positive Bacteria. American Society of Microbiology, Washington, DC.
37 Santos, C. C., C. Sant'anna, A. Terres, N. L. Chuna-e-Silva, J. Scharfstein, and A. P. de A. Lima. 2005. Chagasin, the endogenous cysteine-protease inhibitor of Trypanosoma cruzi, modulates parasite differentiation and invasion of mammalian cells. J. Cell Sci. 118: 901-915.   DOI   ScienceOn
38 Sarafeddinov, A., S. Schmidt, F. Adolf, M. Mainusch, A. Bender, and H.-L. Fuchsbauer. 2009. A novel transglutaminase substrate from Streptomyces mobaraensis triggers autolysis of neutral metalloproteases. Biosci. Biotechnol. Biochem. 73: 993- 999.   DOI   ScienceOn
39 Schmidt, S., F. Adolf, and H.-L. Fuchsbauer. 2008. The transglutaminase activating metalloprotease inhibitor from Streptomyces mobaraensis is a glutamine and lysine substrate of the intrinsic transglutaminase. FEBS Lett. 582: 3132-3138.   DOI   ScienceOn
40 Smith, P. K., R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, et al. 1985. Measurement of protein using bicinchoninic acid. Anal. Biochem. 150: 76-85.   DOI   ScienceOn
41 Stanley, N. R. and B. A. Lazazzera. 2005. Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-γ-DL-glutamic acid production and biofilm formation. Mol. Microbiol. 57: 1143-1158.   DOI   ScienceOn