DOI QR코드

DOI QR Code

NF-κB and Therapeutic Approach

  • Lee, Chang-Hoon (Division of Cancer Biology, Research Institute, National Cancer Center) ;
  • Kim, Soo-Youl (Division of Cancer Biology, Research Institute, National Cancer Center)
  • Published : 2009.07.31

Abstract

Since NF-${\kappa}B$ has been identified as a transcription factor associated with immune cell activation, groups of researchers have dedicated to reveal detailed mechanisms of nuclear factor of ${\kappa}B$ (NF-${\kappa}B$) in inflammatory signaling for decades. The various molecular components of NF-${\kappa}B$ transcription factor pathway have been being evaluated as important therapeutic targets due to their roles in diverse human diseases including inflammation, cystic fibrosis, sepsis, rheumatoid arthritis, cancer, atherosclerosis, ischemic injury, myocardial infarction, osteoporosis, transplantation rejection, and neurodegeneration. With regards to new drugs directly or indirectly modulating the NF-${\kappa}B$ pathway, FDA recently approved a proteasome inhibitor bortezomib for the treatment of multiple myeloma. Many pharmaceutical companies have been trying to develop new drugs to inhibit various kinases in the NF-${\kappa}B$ signaling pathway for many therapeutic applications. However, a gene knock-out study for $IKK{\beta}$ in the NF-${\kappa}B$ pathway has given rise to controversies associated with efficacy as therapeutics. Mice lacking hepatocyte $IKK{\beta}$ accelerated cancer instead of preventing progress of cancer. However, it is clear that pharmacological inhibition of $IKK{\beta}$ appears to be beneficial to reduce HCC. This article will update issues of the NF-${\kappa}B$ pathway and inhibitors regulating this pathway.

Keywords

References

  1. Arkan, M. C., Hevener, A. L., Greten, F. R., Maeda, S., Li, Z. W., Long, J. M., Wynshaw-Boris, A., Poli, G., Olefsky, J. and Karin, M. (2005). IKK-beta links inflammation to obesity-induced insulin resistance. Nat. Med. 11, 191-198 https://doi.org/10.1038/nm1185
  2. Bensaad, K., Tsuruta, A., Selak, M. A., Vidal, M. N., Nakano, K., Bartrons, R., Gottlieb, E. and Vousden, K. H. (2006). TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell 126, 107-120 https://doi.org/10.1016/j.cell.2006.05.036
  3. Birrell, M. A., Hardaker, E., Wong, S., McCluskie, K., Catley, M., De Alba, J., Newton, R., Haj-Yahia, S., Pun, K. T., Watts, C. J., Shaw, R. J., Savage, T. J. and Belvisi, M. G. (2005). Ikappa-B kinase-2 inhibitor blocks inflammation in human airway smooth muscle and a rat model of asthma. Am. J. Respir. Crit. Care. Med. 172, 962-971 https://doi.org/10.1164/rccm.200412-1647OC
  4. Bonetti, B., Stegagno, C., Cannella, B., Rizzuto, N., Moretto, G. and Raine, C. S. (1999). Activation of NF-kappaB and c-jun transcription factors in multiple sclerosis lesions. Implications for oligodendrocyte pathology. Am. J. Pathol. 155, 1433-1438 https://doi.org/10.1016/S0002-9440(10)65456-9
  5. Boone, D. L., Turer, E. E., Lee, E. G., Ahmad, R. C., Wheeler, M. T., Tsui, C., Hurley, P., Chien, M., Chai, S., Hitotsumatsu, O., McNally, E., Pickart, C. and Ma, A. (2004). The ubiquitin-modifying enzyme A20 is required for termination of Toll-like receptor responses. Nat. Immunol. 5, 1052-1060 https://doi.org/10.1038/ni1110
  6. Bottero, V., Busuttil, V., Loubat, A., Magne, N., Fischel, J. L., Milano, G. and Peyron, J. F. (2001). Activation of nuclear factor kappaB through the IKK complex by the topoisomerase poisons SN38 and doxorubicin: a brake to apoptosis in HeLa human carcinoma cells. Cancer Res. 61, 7785-7791
  7. Callister, M. E., Pinhu, L., Catley, M. C., Westwell, A. D., Newton, R., Leaver, S. K., Quinlan, G. J., Evans, T. W., Griffiths, M. J. and Burke-Gaffney, A. (2008). PMX464, a thiol-reactive quinol and putative thioredoxin inhibitor, inhibits NF-kappaB-dependent proinflammatory activation of alveolar epithelial cells. Br. J. Pharmacol. 155, 661-672 https://doi.org/10.1038/bjp.2008.258
  8. Chica, R. A., Gagnon, P., Keillor, J. W. and Pelletier, J. N. (2004). Tissue transglutaminase acylation: Proposed role of conserved active site Tyr and Trp residues revealed by molecular modeling of peptide substrate binding. Protein Sci. 13, 979-991 https://doi.org/10.1110/ps.03433304
  9. Choi, K., Siegel, M., Piper, J. L., Yuan, L., Cho, E., Strnad, P., Omary, B., Rich, K. M. and Khosla, C. (2005). Chemistry and biology of dihydroisoxazole derivatives: selective inhibitors of human transglutaminase 2. Chem. Biol. 12, 469-475 https://doi.org/10.1016/j.chembiol.2005.02.007
  10. Choi, J. Y., Gao, W., Odegard, J., Shiah, H. S., Kashgarian, M., McNiff, J. M., Baker, D. C., Cheng, Y. C. and Craft, J.(2006a). Abrogation of skin disease in LUPUS-prone MRL/FASlpr mice by means of a novel tylophorine analog. Arthritis. Rheum. 54, 3277-3283 https://doi.org/10.1002/art.22119
  11. Choi, S. H., Park, K. J., Ahn, B. Y., Jung, G., Lai, M. M. and Hwang, S. B. (2006b). Hepatitis C virus nonstructural 5B protein regulates tumor necrosis factor alpha signaling through effects on cellular IkappaB kinase. Mol. Cell Biol. 26, 3048-3059. https://doi.org/10.1128/MCB.26.8.3048-3059.2006
  12. Chun, J. K., Seo, D. W., Ahn, S. H., Park, J. H., You, J. S., Lee, C. H., Lee, J. C., Kim, Y. K. and Han, J. W. (2007). Suppression of the NF-kappaB signalling pathway by ergolide, sesquiterpene lactone, in HeLa cells. J. Pharm. Pharmacol. 59, 561-566. https://doi.org/10.1211/jpp.59.4.0011
  13. Collier-Hyams, L. S., Zeng, H., Sun, J., Tomlinson, A. D., Bao, Z. Q., Chen, H., Madara, J. L., Orth, K. and Neish, A. S. (2002). Cutting edge: Salmonella AvrA effector inhibits the key proinflammatory, anti-apoptotic NF-kappaB pathway. J. Immunol. 169, 2846-2850. https://doi.org/10.4049/jimmunol.169.6.2846
  14. Dat, N. T., Lee, J. H., Lee, K., Hong, Y. S., Kim, Y. H. and Lee, J. J. (2008). Phenolic constituents of Amorpha fruticosa that inhibit NF-kappaB activation and related gene expression. J. Nat. Prod. 71, 1696-1700. https://doi.org/10.1021/np800383q
  15. Dave, S. H., Tilstra, J. S., Matsuoka, K., Li, F., Karrasch, T., Uno, J. K., Sepulveda, A. R., Jobin, C., Baldwin, A. S., Robbins, P. D. and Plevy, S. E. (2007). Amelioration of chronic murine colitis by peptide-mediated transduction of the IkappaB kinase inhibitor NEMO binding domain peptide. J. Immunol. 179, 7852-7859. https://doi.org/10.4049/jimmunol.179.11.7852
  16. de Macedo, P., Marrano, C. and Keillor, J. W. (2002). Synthesis of dipeptide-bound epoxides and alpha,beta-unsaturated amides as potential irreversible transglutaminase inhibitors. Bioorg. Med. Chem. 10, 355-360 https://doi.org/10.1016/S0968-0896(01)00292-9
  17. Deng, L., Wang, C., Spencer, E., Yang, L., Braun, A., You, J., Slaughter, C., Pickart, C. and Chen, Z. J. (2000). Activation of the IkappaB kinase complex by TRAF6 requires a dimeric ubiquitin-conjugating enzyme complex and a unique polyubiquitin chain. Cell 103, 351-361 https://doi.org/10.1016/S0092-8674(00)00126-4
  18. Desmet, C., Gosset, P., Pajak, B., Cataldo, D., Bentires-Alj, M., Lekeux, P. and Bureau, F. (2004). Selective blockade of NF-kappa B activity in airway immune cells inhibits the effector phase of experimental asthma. J. Immunol. 173, 5766-5775 https://doi.org/10.4049/jimmunol.173.9.5766
  19. Dey, A., Wong, E. T., Cheok, C. F., Tergaonkar, V. and Lane, D. P. (2008). R-Roscovitine simultaneously targets both the p53 and NF-kappaB pathways and causes potentiation of apoptosis: implications in cancer therapy. Cell Death Differ. 15, 263-273 https://doi.org/10.1038/sj.cdd.4402257
  20. Dunne, A. and O'Neill, L. A. (2003). The interleukin-1 receptor/ Toll-like receptor superfamily: signal transduction during inflammation and host defense. Sci. STKE 2003, re3 https://doi.org/10.1126/stke.2003.171.re3
  21. Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. and Chen, Z. J. (2006). Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245-257 https://doi.org/10.1016/j.molcel.2006.03.026
  22. Edderkaoui, M., Odinokova, I., Ohno, I., Gukovsky, I., Go, V. L., Pandol, S. J. and Gukovskaya, A. S. (2008). Ellagic acid induces apoptosis through inhibition of nuclear factor kappa B in pancreatic cancer cells. World J. Gastroenterol. 14, 3672-3680 https://doi.org/10.3748/wjg.14.3672
  23. Ekbom, A. (1998). Risk of cancer in ulcerative colitis. J. Gastrointest. Surg. 2, 312-313 https://doi.org/10.1016/S1091-255X(98)80067-X
  24. Eldor, R., Yeffet, A., Baum, K., Doviner, V., Amar, D., Ben-Neriah, Y., Christofori, G., Peled, A., Carel, J. C., Boitard, C., Klein, T., Serup, P., Eizirik, D. L. and Melloul, D. (2006). Conditional and specific NF-kappaB blockade protects pancreatic beta cells from diabetogenic agents. Proc. Natl. Acad. Sci. USA 103, 5072-5077 https://doi.org/10.1073/pnas.0508166103
  25. Fattovich, G., Stroffolini, T., Zagni, I. and Donato, F. (2004). Hepatocellular carcinoma in cirrhosis: incidence and risk factors. Gastroenterology 127, S35-50 https://doi.org/10.1053/j.gastro.2004.09.014
  26. Folk, J. E. and Cole, P. W. (1965). Structural requirements of specific substrates for guinea pig liver transglutaminase. J. Biol. Chem. 240, 2951-2960
  27. Folmer, F., Blasius, R., Morceau, F., Tabudravu, J., Dicato, M., Jaspars, M. and Diederich, M. (2006). Inhibition of TNFalpha-induced activation of nuclear factor kappaB by kava (Piper methysticum) derivatives. Biochem. Pharmacol. 71, 1206-1218 https://doi.org/10.1016/j.bcp.2005.12.032
  28. Friedman, C. S., O'Donnell, M. A., Legarda-Addison, D., Ng, A., Cardenas, W. B., Yount, J. S., Moran, T. M., Basler, C. F., Komuro, A., Horvath, C. M., Xavier, R. and Ting, A. T. (2008). The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep. 9, 930-936 https://doi.org/10.1038/embor.2008.136
  29. Furusawa, J., Funakoshi-Tago, M., Tago, K., Mashino, T., Inoue, H., Sonoda, Y. and Kasahara, T. (2009). Licochalcone A significantly suppresses LPS signaling pathway through the inhibition of NF-kappaB p65 phosphorylation at serine 276. Cell Signal 21, 778-785 https://doi.org/10.1016/j.cellsig.2009.01.021
  30. Gagliardo, R., Chanez, P., Mathieu, M., Bruno, A., Costanzo, G., Gougat, C., Vachier, I., Bousquet, J., Bonsignore, G. and Vignola, A. M. (2003). Persistent activation of nuclear factor-kappaB signaling pathway in severe uncontrolled asthma. Am. J. Respir. Crit. Care Med. 168, 1190-1198 https://doi.org/10.1164/rccm.200205-479OC
  31. Gao, D., Wang, R., Li, B., Yang, Y., Zhai, Z. and Chen, D. Y. (2009). WDR34 is a novel TAK1-associated suppressor of the IL-1R/TLR3/TLR4-induced NF-kappaB activation pathway. Cell Mol. Life Sci. Jun 12 https://doi.org/10.1007/s00018-009-0059-6
  32. Gilmore, T. D. (1999). Multiple mutations contribute to the oncogenicity of the retroviral oncoprotein v-Rel. Oncogene 18, 6925-6937 https://doi.org/10.1038/sj.onc.1203222
  33. Gilmore, T. D. and Herscovitch, M. (2006). Inhibitors of NFkappaB signaling: 785 and counting. Oncogene 25, 6887-6899 https://doi.org/10.1038/sj.onc.1209982
  34. Gloire, G., Legrand-Poels, S. and Piette, J. (2006). NF-kappaB activation by reactive oxygen species: fifteen years later. Biochem. Pharmacol. 72, 1493-1505 https://doi.org/10.1016/j.bcp.2006.04.011
  35. Griffin, M., Mongeot, A., Collighan, R., Saint, R. E., Jones, R. A., Coutts, I. G. and Rathbone, D. L. (2008). Synthesis of potent water-soluble tissue transglutaminase inhibitors. Bioorg. Med. Chem. Lett. 18, 5559-5562 https://doi.org/10.1016/j.bmcl.2008.09.006
  36. Hafeez, B. B., Siddiqui, I. A., Asim, M., Malik, A., Afaq, F., Adhami, V. M., Saleem, M., Din, M. and Mukhtar, H. (2008). A dietary anthocyanidin delphinidin induces apoptosis of human prostate cancer PC3 cells in vitro and in vivo: involvement of nuclear factor-kappaB signaling. Cancer Res. 68, 8564-8572 https://doi.org/10.1158/0008-5472.CAN-08-2232
  37. Handel, M. L., McMorrow, L. B. and Gravallese, E. M. (1995). Nuclear factor-kappa B in rheumatoid synovium. Localization of p50 and p65. Arthritis. Rheum. 38, 1762-1770 https://doi.org/10.1002/art.1780381209
  38. Hiscott, J., Nguyen, T. L., Arguello, M., Nakhaei, P. and Paz, S. (2006). Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses. Oncogene 25, 6844-6867 https://doi.org/10.1038/sj.onc.1209941
  39. Hwang, D. M., Kundu, J. K., Shin, J. W., Lee, J. C., Lee, H. J. and Surh, Y. J. (2007). Cis-9,trans-11-conjugated linoleic acid down-regulates phorbol ester-induced NF-kappaB activation and subsequent COX-2 expression in hairless mouse skin by targeting IkappaB kinase and PI3K-Akt. Carcinogenesis. 28, 363-371 https://doi.org/10.1093/carcin/bgl151
  40. Izmailova, E. S., Paz, N., Alencar, H., Chun, M., Schopf, L., Hepperle, M., Lane, J. H., Harriman, G., Xu, Y., Ocain, T., Weissleder, R., Mahmood, U., Healy, A. M. and Jaffee, B. (2007). Use of molecular imaging to quantify response to IKK-2 inhibitor treatment in murine arthritis. Arthritis. Rheum. 56, 117-128 https://doi.org/10.1002/art.22303
  41. Jin, M., Moon, T. C., Quan, Z., Lee, E., Kim, Y. K., Yang, J. H., Suh, S. J., Jeong, T. C., Lee, S. H., Kim, C. H. and Chang, H. W. (2008). The naturally occurring flavolignan, deoxypodophyllotoxin, inhibits lipopolysaccharide-induced iNOS expression through the NF-kappaB activation in RAW264.7 macrophage cells. Biol. Pharm. Bull. 31, 1312-1315 https://doi.org/10.1248/bpb.31.1312
  42. Jost, P. J. and Ruland, J. (2007). Aberrant NF-kappaB signaling in lymphoma: mechanisms, consequences, and therapeutic implications. Blood 109, 2700-2707
  43. Kang, M. I., Henrich, C. J., Bokesch, H. R., Gustafson, K. R., McMahon, J. B., Baker, A. R., Young, M. R. and Colburn, N. H. (2009). A selective small-molecule nuclear factor-kappaB inhibitor from a high-throughput cell-based assay for "activator protein-1 hits". Mol. Cancer Ther. 8, 571-581 https://doi.org/10.1158/1535-7163.MCT-08-0811
  44. Karin, M. (2006). Nuclear factor-kappaB in cancer development and progression. Nature 441, 431-436 https://doi.org/10.1038/nature04870
  45. Karin, M. (2008). The IkappaB kinase - a bridge between inflammation and cancer. Cell Res. 18, 334-342 https://doi.org/10.1038/cr.2008.30
  46. Keats, J. J., Fonseca, R., Chesi, M., Schop, R., Baker, A., Chng, W. J., Van Wier, S., Tiedemann, R., Shi, C. X., Sebag, M., Braggio, E., Henry, T., Zhu, Y. X., Fogle, H., Price-Troska, T., Ahmann, G., Mancini, C., Brents, L. A., Kumar, S., Greipp, P., Dispenzieri, A., Bryant, B., Mulligan, G., Bruhn, L., Barrett, M., Valdez, R., Trent, J., Stewart, A. K., Carpten, J. and Bergsagel, P. L. (2007). Promiscuous mutations activate the noncanonical NF-kappaB pathway in multiple myeloma. Cancer Cell 12, 131-144 https://doi.org/10.1016/j.ccr.2007.07.003
  47. Kim, B. H., Lee, Y. G., Park, T. Y., Kim, H. B., Rhee, M. H. and Cho, J. Y. (2009a). Ginsenoside Rp1, a ginsenoside derivative, blocks lipopolysaccharide-induced interleukin-1beta production via suppression of the NF-kappaB pathway. Planta. Med. 75, 321-326 https://doi.org/10.1055/s-0028-1112218
  48. Kim, B. H., Roh, E., Lee, H. Y., Lee, I. J., Ahn, B., Jung, S. H., Lee, H., Han, S. B. and Kim, Y. (2008a). Benzoxathiole derivative blocks lipopolysaccharide-induced nuclear factorkappaB activation and nuclear factor-kappaB-regulated gene transcription through inactivating inhibitory kappaB kinase beta. Mol. Pharmacol. 73, 1309-1318 https://doi.org/10.1124/mol.107.041251
  49. Kim, B. H., Hong, S. S., Kwon, S. W., Lee, H. Y., Sung, H., Lee, I. J., Hwang, B. Y., Song, S., Lee, C. K., Chung, D., Ahn, B., Nam, S. Y., Han, S. B. and Kim, Y. (2008b). Diarctigenin, a lignan constituent from Arctium lappa, down-regulated zymosan-induced transcription of inflammatory genes through suppression of DNA binding ability of nuclear factor-kappaB in macrophages. J. Pharmacol. Exp. Ther. 327, 393-401 https://doi.org/10.1124/jpet.108.140145
  50. Kim, B. H., Lee, J. Y., Seo, J. H., Lee, H. Y., Ryu, S. Y., Ahn, B. W., Lee, C. K., Hwang, B. Y., Han, S. B. and Kim, Y. (2007). Artemisolide is a typical inhibitor of IkappaB kinase beta targeting cysteine-179 residue and down-regulates NFkappaB-dependent TNF-alpha expression in LPS-activated macrophages. Biochem. Biophys. Res. Commun. 361, 593-598. https://doi.org/10.1016/j.bbrc.2007.07.069
  51. Kim, B. H., Lee, K. H., Chung, E. Y., Chang, Y. S., Lee, H., Lee, C. K., Min, K. R. and Kim, Y. (2006a). Inhibitory effect of chroman carboxamide on interleukin-6 expression in response to lipopolysaccharide by preventing nuclear factorkappaB activation in macrophages. Eur. J. Pharmacol. 543, 158-165 https://doi.org/10.1016/j.ejphar.2006.05.042
  52. Kim, D. S., Park, K. S., Jeong, K. C., Lee, B. I., Lee, C. H. and Kim, S. Y. (2009b). Glucosamine is an effective chemosensitizer via transglutaminase 2 inhibition. Cancer Lett. 273, 243-249 https://doi.org/10.1016/j.canlet.2008.08.015
  53. Kim, D. S., Park, K. S. and Kim, S. Y. (2009c). Silencing of TGase 2 sensitizes breast cancer cells to apoptosis by regulation of survival factors. Front Biosci. 14, 2514-2521 https://doi.org/10.2741/3394
  54. Kim, D. S., Park, S. S., Nam, B. H., Kim, I. H. and Kim, S. Y. (2006b). Reversal of drug resistance in breast cancer cells by transglutaminase 2 inhibition and nuclear factor-kappaB inactivation. Cancer Res. 66, 10936-10943 https://doi.org/10.1158/0008-5472.CAN-06-1521
  55. Kim, J. H., Lee, G., Cho, Y. L., Kim, C. K., Han, S., Lee, H., Choi, J. S., Choe, J., Won, M. H., Kwon, Y. G., Ha, K. S. and Kim, Y. M. (2009d). Desmethylanhydroicaritin inhibits NFkappaB-regulated inflammatory gene expression by modulating the redox-sensitive PI3K/PTEN/Akt pathway. Eur. J. Pharmacol. 602, 422-431 https://doi.org/10.1016/j.ejphar.2008.10.062
  56. Kim, J. M., Lee, D. H., Kim, J. S., Lee, J. Y., Park, H. G., Kim, Y. J., Oh, Y. K., Jung, H. C. and Kim, S. I. (2009e). 5,7- dihydroxy-3,4,6-trimethoxyflavone inhibits the inflammatory effects induced by Bacteroides fragilis enterotoxin via dissociating the complex of heat shock protein 90 and I kappaB alpha and I kappaB kinase-gamma in intestinal epithelial cell culture. Clin. Exp. Immunol. 155, 541-551 https://doi.org/10.1111/j.1365-2249.2008.03849.x
  57. Kim, J. M., Voll, R. E., Ko, C., Kim, D. S., Park, K. S. and Kim, S. Y. (2008c). A new regulatory mechanism of NF-kappaB activation by I-kappaBbeta in cancer cells. J. Mol. Biol. 384, 756-765 https://doi.org/10.1016/j.jmb.2008.10.010
  58. Kim, J. W., Kim, B. G., Lee, K. L., Jeong, J. B., Jung, Y. J., Kim, J. S., Jung, H. C. and Song, I. S. (2008d). The effects of DA-6034 on NF-kappaB activity induced by lipopolysaccharide or tumor necrosis factor alpha in a human colonic epithelial cell line. Hepatogastroenterology 55, 2059-2064
  59. Kim, J. Y., Park, S. J., Yun, K. J., Cho, Y. W., Park, H. J. and Lee, K.T. (2008e). Isoliquiritigenin isolated from the roots of Glycyrrhiza uralensis inhibits LPS-induced iNOS and COX-2 expression via the attenuation of NF-kappaB in RAW 264.7 macrophages. Eur. J. Pharmacol. 584, 175-184 https://doi.org/10.1016/j.ejphar.2008.01.032
  60. Kim, S. Y. (2006). Transglutaminase 2 in inflammation. Front Biosci. 11, 3026-3035 https://doi.org/10.2741/2030
  61. Kondo, Y., Fukuda, K., Adachi, T. and Nishida, T. (2008). Inhibition by a selective IkappaB kinase-2 inhibitor of interleukin-1-induced collagen degradation by corneal fibroblasts in three-dimensional culture. Invest. Ophthalmol. Vis. Sci. 49, 4850-4857 https://doi.org/10.1167/iovs.08-1897
  62. Krappmann, D. and Scheidereit, C. (2005). A pervasive role of ubiquitin conjugation in activation and termination of IkappaB kinase pathways. EMBO Rep. 6, 321-326 https://doi.org/10.1038/sj.embor.7400380
  63. Krikos, A., Laherty, C. D. and Dixit, V. M. (1992). Transcriptional activation of the tumor necrosis factor alpha-inducible zinc finger protein, A20, is mediated by kappa B elements. J. Biol. Chem. 267, 17971-17976
  64. Ku, K. T., Huang, Y. L., Huang, Y. J. and Chiou, W. F. (2008). Miyabenol A inhibits LPS-induced NO production via IKK/ IkappaB inactivation in RAW 264.7 macrophages: possible involvement of the p38 and PI3K pathways. J. Agric. Food Chem. 56, 8911-8918 https://doi.org/10.1021/jf8019369
  65. Kuhn, D. J., Hunsucker, S. A., Chen, Q., Voorhees, P. M., Orlowski, M. and Orlowski, R. Z. (2009). Targeted inhibition of the immunoproteasome is a potent strategy against models of multiple myeloma that overcomes resistance to conventional drugs and nonspecific proteasome inhibitors. Blood 113, 4667-4676 https://doi.org/10.1182/blood-2008-07-171637
  66. Kuper, H., Adami, H. O. and Trichopoulos, D. (2000). Infections as a major preventable cause of human cancer. J. Intern. Med. 248, 171-183 https://doi.org/10.1046/j.1365-2796.2000.00742.x
  67. Kuroda, K., Horiguchi, Y., Nakashima, J., Kikuchi, E., Kanao, K., Miyajima, A., Ohigashi, T., Umezawa, K. and Murai, M. (2005). Prevention of cancer cachexia by a novel nuclear factor {kappa}B inhibitor in prostate cancer. Clin. Cancer Res. 11, 5590-5594 https://doi.org/10.1158/1078-0432.CCR-04-2561
  68. Kurylowicz, A. and Nauman, J. (2008). The role of nuclear factor-kappaB in the development of autoimmune diseases: a link between genes and environment. Acta. Biochim. Pol. 55, 629-647
  69. La Grutta, S., Gagliardo, R., Mirabella, F., Pajno, G. B., Bonsignore, G., Bousquet, J., Bellia, V. and Vignola, A. M. (2003). Clinical and biological heterogeneity in children with moderate asthma. Am. J. Respir. Crit. Care Med. 167, 1490-1495 https://doi.org/10.1164/rccm.200206-549OC
  70. Lai, T. S., Liu, Y., Tucker, T., Daniel, K. R., Sane, D. C., Toone, E., Burke, J. R., Strittmatter, W. J. and Greenberg, C. S. (2008). Identification of chemical inhibitors to human tissue transglutaminase by screening existing drug libraries. Chem. Biol. 15, 969-978 https://doi.org/10.1016/j.chembiol.2008.07.015
  71. Le Negrate, G., Krieg, A., Faustin, B., Loeffler, M., Godzik, A., Krajewski, S. and Reed, J. C. (2008). ChlaDub1 of Chlamydia trachomatis suppresses NF-kappaB activation and inhibits IkappaBalpha ubiquitination and degradation. Cell Microbiol. 10, 1879-1892 https://doi.org/10.1111/j.1462-5822.2008.01178.x
  72. Lee, E. G., Boone, D. L., Chai, S., Libby, S. L., Chien, M., Lodolce, J. P. and Ma, A. (2000). Failure to regulate TNFinduced NF-kappaB and cell death responses in A20-deficient mice. Science 289, 2350-2354 https://doi.org/10.1126/science.289.5488.2350
  73. Lee, G., Na, H. J., Namkoong, S., Jeong Kwon, H., Han, S., Ha, K. S., Kwon, Y. G., Lee, H. and Kim, Y. M. (2006a). 4-Omethylgallic acid down-regulates endothelial adhesion molecule expression by inhibiting NF-kappaB-DNA-binding activity. Eur. J. Pharmacol. 551, 143-151. https://doi.org/10.1016/j.ejphar.2006.08.061
  74. Lee, J., Kim, Y. S., Choi, D. H., Bang, M. S., Han, T. R., Joh, T. H. and Kim, S. Y. (2004). Transglutaminase 2 induces nuclear factor-kappaB activation via a novel pathway in BV-2 microglia. J. Biol. Chem. 279, 53725-53735 https://doi.org/10.1074/jbc.M407627200
  75. Lee, J. C., Kundu, J. K., Hwang, D. M., Na, H. K. and Surh, Y. J. (2007a). Humulone inhibits phorbol ester-induced COX-2 expression in mouse skin by blocking activation of NF-kappaB and AP-1: IkappaB kinase and c-Jun-N-terminal kinase as respective potential upstream targets. Carcinogenesis 28, 1491-1498 https://doi.org/10.1093/carcin/bgm054
  76. Lee, J. C., Won, S. J., Chao, C. L., Wu, F. L., Liu, H. S., Ling, P., Lin, C. N. and Su, C. L. (2008). Morusin induces apoptosis and suppresses NF-kappaB activity in human colorectal cancer HT-29 cells. Biochem. Biophys. Res. Commun. 372, 236-242 https://doi.org/10.1016/j.bbrc.2008.05.023
  77. Lee, J. S., Kim, I. H. and Kim, S. Y. (2006b). Changes in gene expression with increased transglutaminase 2 in a SH-SY5Y cell line. Front Biosci. 11, 2774-2781 https://doi.org/10.2741/2007
  78. Lee, J. Y., Kim, J. S., Kim, J. M., Kim, N., Jung, H. C. and Song, I. S. (2007b). Simvastatin inhibits NF-kappaB signaling in intestinal epithelial cells and ameliorates acute murine colitis. Int. Immunopharmacol 7, 241-248 https://doi.org/10.1016/j.intimp.2006.10.013
  79. Lewis, B. C., Klimstra, D. S., Socci, N. D., Xu, S., Koutcher, J. A. and Varmus, H. E. (2005). The absence of p53 promotes metastasis in a novel somatic mouse model for hepatocellular carcinoma. Mol. Cell Biol. 25, 1228-1237 https://doi.org/10.1128/MCB.25.4.1228-1237.2005
  80. Lorand, L. and Graham, R. M. (2003). Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat. Rev. Mol. Cell Biol. 4, 140-156 https://doi.org/10.1038/nrm1014
  81. Lounnas, N., Frelin, C., Gonthier, N., Colosetti, P., Sirvent, A., Cassuto, J. P., Berthier, F., Sirvent, N., Rousselot, P., Dreano, M., Peyron, J. F. and Imbert, V. (2009). NF-kappaB inhibition triggers death of imatinib-sensitive and imatinibresistant chronic myeloid leukemia cells including T315I Bcr-Abl mutants. Int. J. Cancer 125, 308-317 https://doi.org/10.1002/ijc.24294
  82. Maeda, S., Kamata, H., Luo, J. L., Leffert, H. and Karin, M. (2005). IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121, 977-990 https://doi.org/10.1016/j.cell.2005.04.014
  83. Manam, R. R., Macherla, V. R., Tsueng, G., Dring, C. W., Weiss, J., Neuteboom, S. T., Lam, K. S. and Potts, B. C. (2009). Antiprotealide Is a Natural Product. J. Nat. Prod. 72, 295-297 https://doi.org/10.1021/np800578e
  84. Matoba, S., Kang, J. G., Patino, W. D., Wragg, A., Boehm, M., Gavrilova, O., Hurley, P. J., Bunz, F. and Hwang, P. M. (2006). p53 regulates mitochondrial respiration. Science 312, 1650-1653 https://doi.org/10.1126/science.1126863
  85. Mauro, C., Pacifico, F., Lavorgna, A., Mellone, S., Iannetti, A., Acquaviva, R., Formisano, S., Vito, P. and Leonardi, A. (2006). ABIN-1 binds to NEMO/IKKgamma and co-operates with A20 in inhibiting NF-kappaB. J. Biol. Chem. 281, 18482-18488 https://doi.org/10.1074/jbc.M601502200
  86. May, M. J., D'Acquisto, F., Madge, L. A., Glockner, J., Pober, J. S. and Ghosh, S. (2000). Selective inhibition of NF-kappaB activation by a peptide that blocks the interaction of NEMO with the IkappaB kinase complex. Science 289, 1550-1554 https://doi.org/10.1126/science.289.5484.1550
  87. Mbalaviele, G., Sommers, C. D., Bonar, S. L., Mathialagan, S., Schindler, J. F., Guzova, J. A., Shaffer, A. F., Melton, M. A., Christine, L. J., Tripp, C. S., Chiang, P. C., Thompson, D. C., Hu, Y. and Kishore, N. (2009). A novel, highly selective, tight binding IkappaB kinase-2 (IKK-2) inhibitor: a tool to correlate IKK-2 activity to the fate and functions of the components of the nuclear factor-kappaB pathway in arthritis-relevant cells and animal models. J. Pharmacol. Exp. Ther. 329, 14-25 https://doi.org/10.1124/jpet.108.143800
  88. Meyer, S., Kohler, N. G. and Joly, A. (1997). Cyclosporine A is an uncompetitive inhibitor of proteasome activity and prevents NF-kappaB activation. FEBS Lett. 413, 354-358 https://doi.org/10.1016/S0014-5793(97)00930-7
  89. Miagkov, A. V., Kovalenko, D. V., Brown, C. E., Didsbury, J. R., Cogswell, J. P., Stimpson, S. A., Baldwin, A. S. and Makarov, S. S. (1998). NF-kappaB activation provides the potential link between inflammation and hyperplasia in the arthritic joint. Proc. Natl. Acad. Sci. USA 95, 13859-13864 https://doi.org/10.1073/pnas.95.23.13859
  90. Mitsuhashi, S., Shima, H., Li, Y., Tanuma, N., Okamoto, T., Kikuchi, K. and Ubukata, M. (2008). Tautomycetin suppresses the TNFalpha/NF-kappaB pathway via inhibition of IKK activation. Int. J. Oncol. 33, 1027-1035
  91. Mora, A. L., LaVoy, J., McKean, M., Stecenko, A., Brigham, K. L., Parker, R. and Rojas, M. (2005). Prevention of NFkappaB activation in vivo by a cell-permeable NF-kappaB inhibitor peptide. Am. J. Physiol. Lung. Cell. Mol. Physiol. 289, L536-544 https://doi.org/10.1152/ajplung.00164.2005
  92. Mosialos, G. (1997). The role of Rel/NF-kappa B proteins in viral oncogenesis and the regulation of viral transcription. Semin. Cancer. Biol. 8, 121-129 https://doi.org/10.1006/scbi.1997.0063
  93. Moussaieff, A., Shohami, E., Kashman, Y., Fride, E., Schmitz, M. L., Renner, F., Fiebich, B. L., Munoz, E., Ben-Neriah, Y. and Mechoulam, R. (2007). Incensole acetate, a novel anti-inflammatory compound isolated from Boswellia resin, inhibits nuclear factor-kappa B activation. Mol. Pharmacol. 72, 1657-1664 https://doi.org/10.1124/mol.107.038810
  94. Nakajima, H., Fujiwara, H., Furuichi, Y., Tanaka, K. and Shimbara, N. (2008). A novel small-molecule inhibitor of NFkappaB signaling. Biochem. Biophys. Res. Commun. 368, 1007-1013 https://doi.org/10.1016/j.bbrc.2008.01.166
  95. Nichols, D. B. and Shisler, J. L. (2006). The MC160 protein expressed by the dermatotropic poxvirus molluscum contagiosum virus prevents tumor necrosis factor alpha-induced NF-kappaB activation via inhibition of I kappa kinase complex formation. J. Virol. 80, 578-586 https://doi.org/10.1128/JVI.80.2.578-586.2006
  96. Nishiyama, S., Manabe, N., Kubota, Y., Ohnishi, H., Kitanaka, A., Tokuda, M., Taminato, T., Ishida, T., Takahara, J. and Tanaka, T. (2005). Cyclosporin A inhibits the early phase of NF-kappaB/RelA activation induced by CD28 costimulatory signaling to reduce the IL-2 expression in human peripheral T cells. Int. Immunopharmacol. 5, 699-710. https://doi.org/10.1016/j.intimp.2004.11.018
  97. Nurmi, A., Lindsberg, P. J., Koistinaho, M., Zhang, W., Juettler, E., Karjalainen-Lindsberg, M. L., Weih, F., Frank, N., Schwaninger, M. and Koistinaho, J. (2004). Nuclear factorkappaB contributes to infarction after permanent focal ischemia. Stroke 35, 987-991 https://doi.org/10.1161/01.STR.0000120732.45951.26
  98. Pahan, K. and Schmid, M. (2000). Activation of nuclear factorkB in the spinal cord of experimental allergic encephalomyelitis. Neurosci. Lett. 287, 17-20 https://doi.org/10.1016/S0304-3940(00)01167-8
  99. Pan, M. H., Lai, C. S., Wang, Y. J. and Ho, C. T. (2006). Acacetin suppressed LPS-induced up-expression of iNOS and COX-2 in murine macrophages and TPA-induced tumor promotion in mice. Biochem. Pharmacol. 72, 1293-1303 https://doi.org/10.1016/j.bcp.2006.07.039
  100. Pan, M. R., Chang, H. C., Wu, Y. C., Huang, C. C. and Hung, W.C. (2009). Tubocapsanolide A inhibits transforming growth factor-beta-activating kinase 1 to suppress NFkappaB-induced CCR7. J. Biol. Chem. 284, 2746-2754 https://doi.org/10.1074/jbc.M806223200
  101. Pandey, M. K., Sung, B., Ahn, K. S., Kunnumakkara, A. B., Chaturvedi, M. M. and Aggarwal, B. B. (2007). Gambogic acid, a novel ligand for transferrin receptor, potentiates TNF-induced apoptosis through modulation of the nuclear factor-kappaB signaling pathway. Blood 110, 3517-3525 https://doi.org/10.1182/blood-2007-03-079616
  102. Pardin, C., Pelletier, J. N., Lubell, W. D. and Keillor, J. W. (2008). Cinnamoyl inhibitors of tissue transglutaminase. J. Org. Chem. 73, 5766-5775 https://doi.org/10.1021/jo8004843
  103. Park, S. S., Kim, J. M., Kim, D. S., Kim, I. H. and Kim, S. Y. (2006). Transglutaminase 2 mediates polymer formation of I-kappaBalpha through C-terminal glutamine cluster. J. Biol. Chem. 281, 34965-34972 https://doi.org/10.1074/jbc.M604150200
  104. Pomerantz, J. L. and Baltimore, D. (2002). Two pathways to NF-kappaB. Mol. Cell. 10, 693-695 https://doi.org/10.1016/S1097-2765(02)00697-4
  105. Rajapakse, N., Kim, M. M., Mendis, E. and Kim, S. K. (2008). Inhibition of inducible nitric oxide synthase and cyclooxygenase-2 in lipopolysaccharide-stimulated RAW264.7 cells by carboxybutyrylated glucosamine takes place via down-regulation of mitogen-activated protein kinase-mediated nuclear factor-kappaB signaling. Immunology 123, 348-357 https://doi.org/10.1111/j.1365-2567.2007.02683.x
  106. Rawlings, D. J., Sommer, K. and Moreno-Garcia, M. E. (2006). The CARMA1 signalosome links the signalling machinery of adaptive and innate immunity in lymphocytes. Nat Rev Immunol. 6, 799-812 https://doi.org/10.1038/nri1944
  107. Roder, D. M. (2002). The epidemiology of gastric cancer. Gastric Cancer 5(Suppl 1), 5-11 https://doi.org/10.1007/s10120-002-0203-6
  108. Saha, S. K., Pietras, E. M., He, J. Q., Kang, J. R., Liu, S. Y., Oganesyan, G., Shahangian, A., Zarnegar, B., Shiba, T. L., Wang, Y. and Cheng, G. (2006). Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. Embo. J. 25, 3257-3263 https://doi.org/10.1038/sj.emboj.7601220
  109. Sanchez-Duffhues, G., Calzado, M. A., de Vinuesa, A. G., Appendino, G., Fiebich, B. L., Loock, U., Lefarth-Risse, A., Krohn, K. and Munoz, E. (2009). Denbinobin inhibits nuclear factor-kappaB and induces apoptosis via reactive oxygen species generation in human leukemic cells. Biochem. Pharmacol. 77, 1401-1409 https://doi.org/10.1016/j.bcp.2009.01.004
  110. Schesser, K., Spiik, A. K., Dukuzumuremyi, J. M., Neurath, M. F., Pettersson, S. and Wolf-Watz, H. (1998). The yopJ locus is required for Yersinia-mediated inhibition of NF-kappaB activation and cytokine expression: YopJ contains a eukaryotic SH2-like domain that is essential for its repressive activity. Mol. Microbiol. 28, 1067-1079 https://doi.org/10.1046/j.1365-2958.1998.00851.x
  111. Schon, M., Wienrich, B. G., Kneitz, S., Sennefelder, H., Amschler, K., Vohringer, V., Weber, O., Stiewe, T., Ziegelbauer, K. and Schon, M. P. (2008). KINK-1, a novel small-molecule inhibitor of IKKbeta, and the susceptibility of melanoma cells to antitumoral treatment. J. Natl. Cancer Inst. 100, 862-875 https://doi.org/10.1093/jnci/djn174
  112. Sethi, G., Ahn, K. S., Sung, B. and Aggarwal, B. B. (2008a). Pinitol targets nuclear factor-kappaB activation pathway leading to inhibition of gene products associated with proliferation, apoptosis, invasion, and angiogenesis. Mol. Cancer Ther. 7, 1604-1614 https://doi.org/10.1158/1535-7163.MCT-07-2424
  113. Sethi, G., Ahn, K. S., Sung, B., Kunnumakkara, A. B., Chaturvedi, M. M. and Aggarwal, B. B. (2008b). SH-5, an AKT inhibitor potentiates apoptosis and inhibits invasion through the suppression of anti-apoptotic, proliferative and metastatic gene products regulated by IkappaBalpha kinase activation. Biochem. Pharmacol. 76, 1404-1416 https://doi.org/10.1016/j.bcp.2008.05.023
  114. Shrestha, S., Bhattarai, B. R., Cho, H. and Choi, J. K. (2007). PTP1B inhibitor Ertiprotafib is also a potent inhibitor of IkappaB kinase beta (IKK-beta). Bioorg. Med. Chem. Lett. 17, 2728-2730 https://doi.org/10.1016/j.bmcl.2007.03.001
  115. Siegel, M. and Khosla, C. (2007). Transglutaminase 2 inhibitors and their therapeutic role in disease states. Pharmacol. Ther. , 232-245 https://doi.org/10.1016/j.pharmthera.2007.05.003
  116. Siegel, M., Xia, J. and Khosla, C. (2007). Structure-based design of alpha-amido aldehyde containing gluten peptide analogues as modulators of HLA-DQ2 and transglutaminase 2. Bioorg. Med. Chem. 15, 6253-6261 https://doi.org/10.1016/j.bmc.2007.06.020
  117. Sironi, L., Banfi, C., Brioschi, M., Gelosa, P., Guerrini, U., Nobili, E., Gianella, A., Paoletti, R., Tremoli, E. and Cimino, M. (2006). Activation of NF-kB and ERK1/2 after permanent focal ischemia is abolished by simvastatin treatment. Neurobiol. Dis. 22, 445-451 https://doi.org/10.1016/j.nbd.2005.12.004
  118. Sohn, J., Kim, T. I., Yoon, Y. H., Kim, J. Y. and Kim, S. Y. (2003). Novel transglutaminase inhibitors reverse the inflammation of allergic conjunctivitis. J. Clin. Invest. 111, 121-128 https://doi.org/10.1172/JCI200315937
  119. Strober, W., Murray, P. J., Kitani, A. and Watanabe, T. (2006). Signalling pathways and molecular interactions of NOD1 and NOD2. Nat. Rev. Immunol. 6, 9-20 https://doi.org/10.1038/nri1747
  120. Sommers, C. D., Thompson, J. M., Guzova, J. A., Bonar, S. L., Rader, R. K., Mathialagan, S., Venkatraman, N., Holway, V. W., Kahn, L. E., Hu, G., Garner, D. S., Huang, H. C., Chiang, P. C., Schindler, J. F., Hu, Y., Meyer, D. M. and Kishore, N. N. (2009). Novel tight-binding inhibitory factor-kappaB kinase (IKK-2) inhibitors demonstrate target-specific anti-inflammatory activities in cellular assays and following oral and local delivery in an in vivo model of airway inflammation. J. Pharmacol. Exp. Ther 330, 377-388 https://doi.org/10.1124/jpet.108.147538
  121. Suh, G. Y., Ham, H. S., Lee, S. H., Choi, J. C., Koh, W. J., Kim, S. Y., Lee, J., Han, J., Kim, H. P., Choi, A. M. and Kwon, O. J. (2006). A peptide with anti-transglutaminase activity decreases lipopolysaccharide-induced lung inflammation in mice. Exp. Lung. Res. 32, 43-53 https://doi.org/10.1080/01902140600691514
  122. Sun, L., Deng, L., Ea, C. K., Xia, Z. P. and Chen, Z. J. (2004). The TRAF6 ubiquitin ligase and TAK1 kinase mediate IKK activation by BCL10 and MALT1 in T lymphocytes. Mol. Cell 14, 289-301 https://doi.org/10.1016/S1097-2765(04)00236-9
  123. Sung, B., Pandey, M. K. and Aggarwal, B. B. (2007). Fisetin, an inhibitor of cyclin-dependent kinase 6, down-regulates nuclear factor-kappaB-regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptor-interacting protein-regulated IkappaBalpha kinase activation. Mol. Pharmacol. 71, 1703-1714 https://doi.org/10.1124/mol.107.034512
  124. Tartaglia, L. A. and Goeddel, D. V. (1992). Two TNF receptors. Immunol. Today 13, 151-153 https://doi.org/10.1016/0167-5699(92)90116-O
  125. Thorgeirsson, S. S. and Grisham, J. W. (2002). Molecular pathogenesis of human hepatocellular carcinoma. Nat. Genet. 31, 339-346 https://doi.org/10.1038/ng0802-339
  126. Tiedemann, R. E., Schmidt, J., Keats, J. J., Shi, C. X., Zhu, Y. X., Palmer, S. E., Mao, X., Schimmer, A. D. and Stewart, A. K. (2009). Identification of a potent natural triterpenoid inhibitor of proteosome chymotrypsin-like activity and NFkappaB with antimyeloma activity in vitro and in vivo. Blood 113, 4027-4037 https://doi.org/10.1182/blood-2008-09-179796
  127. Trompouki, E., Hatzivassiliou, E., Tsichritzis, T., Farmer, H., Ashworth, A. and Mosialos, G. (2003). CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 424, 793-796 https://doi.org/10.1038/nature01803
  128. Varfolomeev, E., Blankenship, J. W., Wayson, S. M., Fedorova, A. V., Kayagaki, N., Garg, P., Zobel, K., Dynek, J. N., Elliott, L. O., Wallweber, H. J., Flygare, J. A., Fairbrother, W. J., Deshayes, K., Dixit, V. M. and Vucic, D. (2007). IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell 131, 669-681 https://doi.org/10.1016/j.cell.2007.10.030
  129. Venkataraman, L., Burakoff, S. J. and Sen, R. (1995). FK506 inhibits antigen receptor-mediated induction of c-rel in B and T lymphoid cells. J. Exp. Med. 181, 1091-1099 https://doi.org/10.1084/jem.181.3.1091
  130. Wakatsuki, S., Suzuki, J., Ogawa, M., Masumura, M., Muto, S., Shimizu, T., Takayama, K., Itai, A. and Isobe, M. (2008). A novel IKK inhibitor suppresses heart failure and chronic remodeling after myocardial ischemia via MMP alteration. Expert. Opin. Ther. Targets 12, 1469-1476 https://doi.org/10.1517/14728220802551140
  131. Wertz, I. E., O'Rourke, K. M., Zhou, H., Eby, M., Aravind, L., Seshagiri, S., Wu, P., Wiesmann, C., Baker, R., Boone, D. L., Ma, A., Koonin, E. V. and Dixit, V. M. (2004). De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430, 694-699 https://doi.org/10.1038/nature02794
  132. Wu, C. J. and Ashwell, J. D. (2008). NEMO recognition of ubiquitinated Bcl10 is required for T cell receptor-mediated NF-kappaB activation. Proc. Natl. Acad. Sci. USA 105, 3023-3028 https://doi.org/10.1073/pnas.0712313105
  133. Wu, Z. H., Shi, Y., Tibbetts, R. S. and Miyamoto, S. (2006). Molecular linkage between the kinase ATM and NF-kappaB signaling in response to genotoxic stimuli. Science 311, 1141-1146 https://doi.org/10.1126/science.1121513
  134. Xiao, G., Cvijic, M. E., Fong, A., Harhaj, E. W., Uhlik, M. T., Waterfield, M. and Sun, S. C. (2001). Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells: evidence for the involvement of IKKalpha. Embo. J. 20, 6805-6815 https://doi.org/10.1093/emboj/20.23.6805
  135. Yan, S. S., Li, Y., Wang, Y., Shen, S. S., Gu, Y., Wang, H. B., Qin, G. W. and Yu, Q. (2008). 17-Acetoxyjolkinolide B irreversibly inhibits IkappaB kinase and induces apoptosis of tumor cells. Mol. Cancer Ther. 7, 1523-1532 https://doi.org/10.1158/1535-7163.MCT-08-0263
  136. Yanai, A., Maeda, S., Shibata, W., Hikiba, Y., Sakamoto, K., Nakagawa, H., Ohmae, T., Hirata, Y., Ogura, K., Muto, S., Itai, A. and Omata, M. (2008). Activation of IkappaB kinase and NF-kappaB is essential for Helicobacter pylori-induced chronic gastritis in Mongolian gerbils. Infect. Immun. 76, 781-787 https://doi.org/10.1128/IAI.01046-07
  137. Yoneyama, M. and Fujita, T. (2008). Structural mechanism of RNA recognition by the RIG-I-like receptors. Immunity 29, 178-181 https://doi.org/10.1016/j.immuni.2008.07.009
  138. Yore, M. M., Liby, K. T., Honda, T., Gribble, G. W. and Sporn, M. B. (2006). The synthetic triterpenoid 1-[2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oyl]imidazole blocks nuclear factor-kappaB activation through direct inhibition of IkappaB kinase beta. Mol. Cancer Ther. 5, 3232-3239 https://doi.org/10.1158/1535-7163.MCT-06-0444
  139. Zuckerman, S. H., Evans, G. F. and Guthrie, L. (1991). Transcriptional and post-transcriptional mechanisms involved in the differential expression of LPS-induced IL-1 and TNF mRNA. Immunology 73, 460-465

Cited by

  1. p38-Targeted inhibition of interleukin-12 expression by ethanol extract fromCordyceps bassianain lipopolysaccharide-activated macrophages vol.33, pp.1, 2011, https://doi.org/10.3109/08923973.2010.482137
  2. Novel suppressive effects of cardamonin on the activity and expression of transglutaminase-2 lead to blocking the migration and invasion of cancer cells vol.92, pp.2, 2013, https://doi.org/10.1016/j.lfs.2012.11.009
  3. Transglutaminase-2 induces N-cadherin expression in TGF-β1-induced epithelial mesenchymal transition via c-Jun-N-terminal kinase activation by protein phosphatase 2A down-regulation vol.49, pp.7, 2013, https://doi.org/10.1016/j.ejca.2012.11.036
  4. Novel participation of transglutaminase-2 through c-Jun N-terminal kinase activation in sphingosylphosphorylcholine-induced keratin reorganization of PANC-1 cells vol.1811, pp.12, 2011, https://doi.org/10.1016/j.bbalip.2011.07.007
  5. Src-mediated regulation of inflammatory responses by actin polymerization vol.79, pp.3, 2010, https://doi.org/10.1016/j.bcp.2009.09.016
  6. Anti-inflammatory mechanism of ginsenoside Rh1 in lipopolysaccharide-stimulated microglia: critical role of the protein kinase A pathway and hemeoxygenase-1 expression vol.115, pp.6, 2010, https://doi.org/10.1111/j.1471-4159.2010.07075.x
  7. Regulation of matrix metalloproteinase-9 gene expression in MPP+- or 6-OHDA-treated human neuroblastoma SK-N-BE(2)C cells vol.56, pp.3, 2010, https://doi.org/10.1016/j.neuint.2009.11.019
  8. Transglutaminase-2 Is Involved in All-Trans Retinoic Acid-Induced Invasion and Matrix Metalloproteinases Expression of SH-SY5Y Neuroblastoma Cells via NF-κB Pathway vol.20, pp.3, 2012, https://doi.org/10.4062/biomolther.2012.20.3.286
  9. Suppression of Transglutaminase-2 is Involved in Anti-Inflammatory Actions of Glucosamine in 12-O-Tetradecanoylphorbol-13-Acetate-Induced Skin Inflammation vol.20, pp.4, 2012, https://doi.org/10.4062/biomolther.2012.20.4.380
  10. α-Synuclein Activates Microglia by Inducing the Expressions of Matrix Metalloproteinases and the Subsequent Activation of Protease-Activated Receptor-1 vol.185, pp.1, 2010, https://doi.org/10.4049/jimmunol.0903480
  11. Anti-Inflammatory Mechanism of Compound K in Activated Microglia and Its Neuroprotective Effect on Experimental Stroke in Mice vol.341, pp.1, 2009, https://doi.org/10.1124/jpet.111.189035
  12. Role of Sphingosylphosphorylcholine in Tumor and Tumor Microenvironment vol.11, pp.11, 2009, https://doi.org/10.3390/cancers11111696