• Title/Summary/Keyword: transgenic embryo

Search Result 195, Processing Time 0.024 seconds

A Potential Demerit of the Pronuclear Microinjection Technique (형질전환 마우스 생산 및 표현형에 pronuclear microinjection 이 미치는 영향 연구)

  • Wang, Ai-Guo;Kim, Sun-Uk;Moon, Hyung-Bae;Hyun, Byung-Hwa;Nam, Ki-Hoan;Suh, Jun-Gyo;Kim, Nam-Soon;Yu, Dae-Yeul;Lee, Dong-Seok
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.566-570
    • /
    • 2006
  • Pronuclear microinjection (PMI) is a primary method for producing transgenic mice and offers a powerful tool for investigating gene function in vivo. The method has several reported advantages and disadvantages. Here, we report another potential shortcoming. The survival rate of fertilized one cell-stage embryos was significantly reduced after PMI procedure (65.4% (1202/1838)). In addition, the proportion of embryos developing to full-term was also significantly lower than that of embryos not undergoing PMI (26.5% (319/1202) vs 41.9% (57/136)). Moreover, 3 out of 21 (14.3%) founder control mice which were non-transgene-carrying littermates of transgenic founders showed histopathological changes in their liver, which was comparable to that in of transgenic lineages (4 out of 27 (14.8%)). In conclusion, the mechanical damages in chromosomes occurring during PMI procedure may be a potential factor influencing phenotypes of transgenic mice.

Construction of fat1 Gene Expression Vector and Its Catalysis Efficiency in Bovine Fetal Fibroblast Cells

  • Liu, Boyang;Yang, Runjun;Li, Junya;Zhang, Lupei;Liu, Jing;Lu, Chunyan;Lian, Chuanjiang;Li, Zezhong;Zhang, Yong-Hong;Zhang, Liying;Zhao, Zhihui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.5
    • /
    • pp.621-628
    • /
    • 2012
  • The FAT-1 protein is an n-3 fatty acid desaturase, which can recognize a range of 18- and 20-carbon n-6 substrates and transform n-6 polyunsaturated fatty acids (PUFAs) into n-3 PUFAs while n-3 PUFAs have beneficial effect on human health. Fat1 gene is the coding sequence from Caenorhabditis elegans which might play an important role on lipometabolism. To reveal the function of fat1 gene in bovine fetal fibroblast cells and gain the best cell nuclear donor for transgenic bovines, the codon of fat1 sequence was optimized based on the codon usage frequency preference of bovine muscle protein, and directionally cloned into the eukaryotic expression vector pEF-GFP. After identifying by restrictive enzyme digests with AatII/XbaI and sequencing, the fusion plasmid pEF-GFP-fat1 was identified successfully. The pEF-GFP-fat1 vector was transfected into bovine fetal fibroblast cells mediated by Lipofectamine2000$^{TM}$. The positive bovine fetal fibroblast cells were selected by G418 and detected by RT-PCR. The results showed that a 1,234 bp transcription was amplified by reverse transcription PCR and the positive transgenic fat1 cell line was successfully established. Then the expression level of fat1 gene in positive cells was detected using quantitative PCR, and the catalysis efficiency was detected by gas chromatography. The results demonstrated that the catalysis efficiency of fat1 was significantly high, which can improve the total PUFAs rich in EPA, DHA and DPA. Construction and expression of pEF-GFP-fat1 vector should be helpful for further understanding the mechanism of regulation of fat1 in vitro. It could also be the first step in the production of fat1 transgenic cattle.

Triploid hybridization as a reproductive containment method of genetically modified fish, exemplified by fast-growing transgenic mud loach

  • Nam, Yoon-Kwon;Park, In-Seok;Kim, Dong-Soo
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.41-41
    • /
    • 2003
  • Transgenic triploid hybrid between fast-growingtransgenic mud loach (Misgurnus mizolepis) males and cyprinid loach (M. anguillicaudatus) females were generated and their performance on growth, feed conversion ability and reproduction were evaluated. Although the growth accelerations of diploid and triploid transgenic hybrids were not as much as those of original transgenic mud loaches, they still represented persistent growth stimulation ranging 11 to 28 fold when compared to their non-transgenic counterparts, with significantly improved feed conversion efficiency up to 2-fold (compared to non-transgenic hybrid) and 1.5-fold (compared to non-transgenic mud loach) in maximum. The gonad development of diploid hybrids was fertile in histological views regardless of transgenic genotypes but the extent of developmentin hybrid fish were less than mud loach diploids at the same age. On the other hands, very stringent sterility was obtained in both sexes of the triploid hybrid transgenics: ovary and testis from transgenic triploid hybrids were significantly depressed and any notable sign for maturation to ovum or spermatids was not detected. No viable embryo was obtained in a fertilization trial using the suspension prepared from the minced testes of transgenic triploid hybrids. This study may indicate the potential usefulness of triploid hybridization as a mean for reproductive containment of transgenic mud loach.

  • PDF

Cloning of Transgenic Rabbit Embryos Expressing Green Fluorescent Protein Gene by nuclear Transplantation (Green Fluorescent Protein 발현 토끼 수정란의 핵이식에 의한 복제)

  • Kang, T. Y.;Yin, X. J.;Rho, G. J.;Lee, H.;Chae, Y. J.;Lee, H. J
    • Journal of Embryo Transfer
    • /
    • v.15 no.2
    • /
    • pp.167-173
    • /
    • 2000
  • The principal objective of this study was to clone transgenic embryos in order to improve the efficiency of transgenic animal production by the combination of microinjection and nuclear transplantation techniques. Mature female New Zealand White rabbits were superovulated by eCG and hCG treatments, fllowed by natural mating. Zygotes were collected from the oviducts at 18∼22 h after hCG injection by flushing with D-PBS containing 5% fetal calf serum(FCS). Two to three picoliters of green fluorescent protein(GFP) gene wa microinjected into male pronucleus. The foreign gene-injected zygotes were cultured in TCM-199 or RD medium containing 10% FCS with a monolayer of rabbit oviductal epithelial cells in a 5% CO2 incubator. The morulae expressing GFP gene were selected and their blastomeres were separated for the use of nuclear donor. Following nuclear transplantation of fluorescence-positive morula stage blastomeres, 13 (21.3%) out of 61 fused oocytes developed to blastocyst stage and all of the cloned blastocysts expressed GFP. The results indicate that the screening of transgene in rabbit embryos by GFP detection could be a promisible method for the preselection of transgenic embryos. Also the cloning of preselected transgenic embryos by nuclear transplantatin could be efficiently applied to the multiple production of transgenic animals.

  • PDF

Production, Cryopreservation and Transfer of Bovine Embryos Cultured in Serum-Free Medium

  • Hoshi, Hiroyoshi
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2002.11a
    • /
    • pp.3-7
    • /
    • 2002
  • In vitro embryo culture techniques provide significant contributions not only for a basic research of fertilization and early embryogenesis, but also for a low cost mass production of bovine embryos for transfer, embryo diagnosis, nuclear cloning and the production of transgenic cows. This presentation introduces newly developed serum-free media (IVD101 and IVMD101) that are effective far high yields of transferable embryos of excellent quality from in vitro-matured and fertilized oocytes. Both serum-free media are superior to a conventional serum-containing medium on the increased rates of blastocyst formation, post-thaw embryo viability, and pregnancy after transfer. Furthermore, reduced risks of calf mortality and large calf syndrome are also observed for the serum-free-derived embryos. Serum-derived embryos contain a large number of lipid droplets and immature mitochondria in their cytoplasm that may account for the lower production of transferable embryos and poor embryo quality.

  • PDF

Recent Development in Embryo Technology in Pigs - Review -

  • Niwa, K.;Funahashi, H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.966-975
    • /
    • 1999
  • Technologies on preimplantation porcine embryos have been developed quickly and significantly. Successful development of systems for culture of porcine zygotes to the blastocyst stage has made it possible to utilize follicular oocytes for in vitro production of embryos and thus stimulated research on various embryo technologies. Recent technological development of embryo cryopreservation, separation of X- and Y-bearing spermatozoa and non-surgical embryo transfer has also made it easy to utilize in vivo- and in vitro-produced embryos for artificial manipulation to produce clones and transgenic pigs. Further progress in overcoming various problems associated with each embryo technology will result in acceptable efficiency to utilize porcine embryos with a high or increased quality. Combining these technologies will accelerate further expansion of the swine industry not only for meat production but also for the production of therapeutic recombinant proteins and xonografts.

Production of ${\alpha}$1,3-Galactosyltransferase (GalT) Double Knock-out (-/-) Transgenic Pigs for Xenotransplantation (${\alpha}$1,3-Galactosyltransferase(GalT) 유전자가 완전 Knock-out(-/-)된 바이오장기용 형질 전환 돼지 생산)

  • Hwang, Seong-Soo;Oh, Keun-Bong;Kim, Dong-Hoon;Woo, Jea-Seok;Shim, Ho-Sup;Yun, Ik-Jin;Park, Jin-Ki;Im, Gi-Sun
    • Journal of Embryo Transfer
    • /
    • v.27 no.1
    • /
    • pp.9-14
    • /
    • 2012
  • This study was conducted to analyze the transgenic efficiency and sex ratio in ${\alpha}$-1,3-galactosyltransferase (GalT) knock-out (KO) transgenic pigs according to generation. GalT KO piglets were produced by artificial insemination or natural mating. The transgenic confirmation of GalT KO was evaluated by PCR amplification using specific primers. After electrophoresis, three types of bands were detected such as 2.3 kb single band (Wild), 2.3 and 3.6kb double bands (GalT KO -/+; heterozygote), and 3.6kb single band (GalT KO -/-; homozygote). Transgenic efficiency in F1 generation was 64.5% (23/35) of GalT KO (-/+). In F2 generation, GalT KO transgenic efficiency was 36.4% (21/57, Wild), 47.5% (28/57, GalT KO -/+), and 16.1% (8/57, GalT KO -/-), respectively. Interestingly, no homozygote piglets were born in 6 deliveries among total 11 deliveries, although they were pregnant between male (M) and female (F) $F_1$ heterozygote. In the 5 litters including at least one GalT KO -/- piglet, the transgenic efficiency was 13.3% (2/24, Wild), 51.3% (14/24, GalT KO -/+), and 35.3% (8/24, GalT KO -/-), respectively. The sex ratio of M and F was 40:60 in $F_1$ and 49:51 in $F_2$ generation, respectively. Based on these results, GalT KO transgenic pigs have had a reproductive ability with a normal range of transgenic efficiency and sex ratio.

A Study of the Retrovirus-Mediated Transgenic Chicken Production on Chicken Embryos (닭 수정란에서 Retrovirus를 이용한 형질전환 닭 생산 연구)

  • Byun S. J.;Park C.;Kim S. W.;Park J. K.;Chang W. K.;Yang B. S.;Kim T. Y.;Sohn S. H.;Kim S. H.;Jeon I. S.
    • Korean Journal of Poultry Science
    • /
    • v.32 no.4
    • /
    • pp.225-229
    • /
    • 2005
  • Microinjection of recombinant retrovirus beneath the blastoderm of non-incubated chicken embryo is now the most widespread method for generating transgenic chickens, but transgenesis rates are very low. So to improve this problem, we first introduced retrovirus vector carrying RSV-GFP gene to an one-cell embryo culture system. To investigate whether retrovirus could work on an one-cell chicken embryo, we microinjected the concentrated retrovirus stocks into the germinal disc of one cell or stage-X chicken embryos. Analysis of reporter gene expression on day 4 embryos showed that GFP expression was observed in the only stage-X chicken embryo but was not in the one-cell embryo group. These results suggest that retrovirus system is the most efficient method to generate transgenic chickens in the stage-X embryo.

Phosphorylation Status of RNA Polymerase II Carboxyl-terminal Domain in Porcine Oocytes and Early Embryos

  • Oqani, Reza K.;Zhang, Jin Yu;Lee, Min-Gu;Diao, Yun Fei;Jin, Dong-Il
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.6
    • /
    • pp.789-793
    • /
    • 2012
  • Fertilization of the oocyte commences embryogenesis during which maternally inherited mRNAs are degraded and the embryonic genome is activated. Transcription of embryonic mRNA is initiated by embryonic genome activation (EGA). RNA polymerase II (RNA Pol II) is responsible for the synthesis of mRNAs and most small nuclear RNAs, and consists of 12 subunits, the largest of which characteristically harbors a unique C-terminal domain (CTD). Transcriptional activity of RNA Pol II is highly regulated, in particular, by phosphorylation of serine residues in the CTD. Here, we have shown the presence of RNA Pol II CTD phosphoisoforms in porcine oocytes and preimplantation embryos. The distribution pattern as well as phosphorylation dynamics in germinal vesicles and during embryogenesis differed in developmental stages with these isoforms, indicating a role of RNA Pol II CTD phosphorylation at the serine residue in transcriptional activation during both oocyte growth and embryonic genome activation. We additionally examined the effects of the RNA Pol II inhibitor, ${\alpha}$-amanitin, on embryo development. Our results show that inhibition of polymerase, even at very early stages and for a short period of time, dramatically impaired blastocyst formation. These findings collectively suggest that the functionality of maternal RNA Pol II, and consequently, expression of early genes regulated by this enzyme are essential for proper embryo development.